Skip to main content
Log in

Phylogenetic and Physiological Diversity of Bacteria Isolated from Puruogangri Ice Core

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The microbial abundance, the percentage of viable bacteria, and the diversity of bacterial isolates from different regions of a 83.45-m ice core from the Puruogangri glacier on the Tibetan Plateau (China) have been investigated. Small subunit 16S rRNA sequences and phylogenetic relationships have been studied for 108 bacterial isolates recovered under aerobic growth conditions from different regions of the ice core. The genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-polymerase chain reaction and physiological heterogeneity of the closely evolutionary related bacterial strains isolated from different ice core depths were analyzed as well. The results showed that the total microbial cell, percentages of live cells, and the bacterial CFU ranged from 104 to 105 cell ml−1 (Mean, 9.47 × 104; SD, 5.7 × 104, n = 20), 25–81%, and 0–760 cfu ml−1, respectively. The majority of the isolates had 16S rRNA sequences similar to previously determined sequences, ranging from 92 to 99% identical to database sequences. Based on their 16S rRNA sequences, 42.6% of the isolates were high-G + C-content (HGC) gram-positive bacteria, 35.2% were low-G + C (LGC) gram-positive bacteria, 16.6% were Proteobacteria, and 5.6% were CFB group. There were clear differences in the depth distribution of the bacterial isolates. The isolates tested exhibited unique phenotypic properties and high genetic heterogeneity, which showed no clear correlation with depths of bacterial isolation. This layered distribution and high heterogeneity of bacterial isolates presumably reflect the diverse bacterial sources and the differences in bacteria inhabiting the glacier’s surface under different past climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abyzov S, Mitskevich I, Poglazova M (1998) Microflora of the deep glacier horizons of Central Antarctica. Microbiology 67:66–73

    Google Scholar 

  2. Belkum A, Kluijtmans J, Leeuwen W, Goessens W, Averst E, Verbrugh H (1995) Investigation into the repeated recovery of coagulase-negative staphylococci from blood taken at the end of cardiopulmonary by-pass. J Hosp Infect 31:285–293

    Article  PubMed  Google Scholar 

  3. Bowman J, McCammon S, Brown M, Nichols D, McMeekin T (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    PubMed  CAS  Google Scholar 

  4. Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  PubMed  CAS  Google Scholar 

  5. Crecchio C, Curci M, Pellegrino A, Ricciuti P, Tursi Nunzia, Ruggiero P (2007) Soil microbial dynamics and genetic diversity in soil under monoculture wheat grown in different long-term management systems. Soil Biol Biochem 39:1391–1400

    Article  CAS  Google Scholar 

  6. Castello J, Rogers S (2005) Life in ancient ice. Princeton University Press, Princeton, NJ, p 300

    Google Scholar 

  7. Chetoui H, Delhalle E, Melin P, Sabri A, Thonart P, Patrick D (1999) Epidemiological typing of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates by pulsed-field gel electrophoresis and antibiotic susceptibility patterns. Res Microbiol 150:265–272

    Article  PubMed  CAS  Google Scholar 

  8. Christner BC, Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577

    Article  PubMed  CAS  Google Scholar 

  9. Christner BC, Thompson EM, Thompson LG, Reeve JN (2003) Bacterial recovery from ancient ice. Environ Microbiol 5:433–436

    Article  PubMed  CAS  Google Scholar 

  10. Christner BC, Thompson EM, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Article  Google Scholar 

  11. Ciapini A, Dei R, Sacco C, Ventura S, Viti C, Giovannetti L (2002) Phenotypic and genotypic characterisation of Aeromonas isolates. Ann Microbiol 52:339–352

    CAS  Google Scholar 

  12. Dancer S, Shears P, Platt D (1997) Isolation and characterization of coliforms from glacial ice and water in Canada’s High Arctic. J Appl Microbiol 82:597–609

    PubMed  CAS  Google Scholar 

  13. Dicuonzo G, Gherardi G, Lorino G, Angeletti S, Battistoni F, Bertuccini L, Creti R, Roberta, Venditti M (2001) Antibiotic resistance and genotypic characterization by PFGE of clinical and environmental isolates of enterococci. FEMS Microbiol Lett 201:205–211

    Article  PubMed  CAS  Google Scholar 

  14. Dillon JG, Miller SR, Castenholz RW (2003) UV-acclimation responses in natural populations of cyanobacteria (Calothrix sp.). Environ Microbiol 5:473–483

    Article  PubMed  Google Scholar 

  15. Fong N, Burgess ML, Barrow KD, Glenn DR (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756

    Article  PubMed  CAS  Google Scholar 

  16. Hantula J, Koivula T, Luo C, Bamford DH (1996) Bacterial diversity at surface water in three locations within the Baltic sea as revealed by culture-dependent molecular techniques. J Basic Microbiol 36:163–176

    Article  PubMed  CAS  Google Scholar 

  17. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, p 21–132

    Google Scholar 

  18. Kumar S, Tamura MN (1993) MEGA molecular evolutionary genetics analysis, version 1.01. Pennsylvania State University, University Park

    Google Scholar 

  19. Lighthart B (1997) The ecology of bacteria in the alfresco atmosphere. FEMS Microbiol Ecol 23:263–274

    Article  CAS  Google Scholar 

  20. Maugeri TL, Gugliandolo C, Bruni V (1996) Heterotrophic bacteria in the Ross Sea (Terra Nova Bay, Antarctica). Microbiologica 19:67–76

    PubMed  CAS  Google Scholar 

  21. Michaud L, Cello F, Brilli M, Fani R, Giudice A, Bruni V (2004) Biodiversity of cultivable psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea, Antarctica). FEMS Microbiol Lett 230:63–71

    Article  PubMed  CAS  Google Scholar 

  22. Miteva VI, Sheridan PP, Brenchley JB (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland ice core. Appl Environ Microbiol 70:202–213

    Article  PubMed  CAS  Google Scholar 

  23. Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467

    Article  PubMed  CAS  Google Scholar 

  24. Mullins TD, Britschgi TB, Krest RL, Giovannoni SJ (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158

    Article  CAS  Google Scholar 

  25. NCCLS (2003) Performance standards for antimicrobial disk susceptibility tests; approved standard, 8th edn. NCCLS document M2-A8 [ISBN 1-56238-485-6]. NCCLS, Pennsylvania, USA

    Google Scholar 

  26. Nichols D, Bowman J, Sanderson K, Mancuso C, Lewis T, Mcmeekin T (1999) Development with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  PubMed  CAS  Google Scholar 

  27. Ponder M, Gilmour S, Bergholz P, Mindock C, Rawle H, Michael F, Tiedje J (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115

    Article  PubMed  CAS  Google Scholar 

  28. Priscu JC, Adams E, Lyons WB., Voytek MA, Mogk DW, Brown RL (1999) Geomicrobiology of subglacial ice above lake Vostok, Antarctica. Science 286:2141–2144

    Article  PubMed  CAS  Google Scholar 

  29. Priscu JC, Christner BC (2003) Earth’s icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, DC, p 130–145

    Google Scholar 

  30. Sachdeva P, Jugsharan S (2004) Repetitive elements sequence (REP/ERIC)-PCR based genotyping of clinical and environmental strains of Yersinia enterocolitica biotype 1A reveal existence of limited number of clonal groups. FEMS Microbiol Lett 240:193–201

    Article  PubMed  CAS  Google Scholar 

  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  32. Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene Sequencing and real-time PCR. Appl Environ Microbiol 71:123–130

    Article  PubMed  CAS  Google Scholar 

  33. Sheridan P, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki K, Sasaki J, Uramoto M, Nakase T, Komagata K (1997) Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev.,comb. nov., an obligately Psychrophilic actinomycete to accommodate Curtobacterium psychrophilum. Int J Syst Bacteriol 47:474–478

    Article  PubMed  CAS  Google Scholar 

  35. Takeuchi N (2001) The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrol Process 15:3447–3459

    Article  Google Scholar 

  36. Takeuchi N, Kohshima S, Fujita K (1998) Snow algae community on a Himalayan glacier, glacier AX010 East Nepal: relationship with glacier summer mass balance. Bull Glacier Res 16:43–50

    Google Scholar 

  37. Ventura M, Zink R (2002) Specific identification and molecular typing analysis of Lactobacillus johnsonii by using PCR-based methods and pulsed-field gel electrophoresis. FEMS Microbiol Lett 217:141–154

    Article  PubMed  CAS  Google Scholar 

  38. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  PubMed  CAS  Google Scholar 

  39. Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385

    Article  Google Scholar 

  40. Weinbauer MG, Beckmann C, Höfle MG (1998) Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl Environ Microbiol 64:5000–5003

    PubMed  CAS  Google Scholar 

  41. Weisenburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Google Scholar 

  42. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  43. Wusheng Y, Tandong Y, Tian L, Yu Wg, Changliang Y (2005) Isotopic composition of atmospheric water vapor before and after the monsoon’s end in the Nagqu River Basin. Chin Sci Bull 50:2755–2760

    Article  CAS  Google Scholar 

  44. Xiang S, YaoT, An L, Xu B, Wang J (2005) 16S rRNA Sequences andDifference0s in Bacteria Isolated Muztag Ata Glacier at Increasing Depths. Appl Environ Microbiol 71:4619–4627

    Article  PubMed  CAS  Google Scholar 

  45. Yoshimura Y, Kohshima S, Ohtani S (1997) A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arct Antarct Alp Res 29:126–137

    Google Scholar 

  46. Yoshimura Y, Kohshima S, Takeuchi N, Seko K, Fujita K (2000) Himalayan ice-core dating with snow algae. J Glaciol 46: 335–340

    Article  Google Scholar 

  47. Zhang S, Hou S, Ma X, Qin D, Chen T (2006) Culturable bacteria in Himalayan ice in response to atmospheric circulation. Biogeosci Diss 3:765–778

    Google Scholar 

  48. Zhang X, Ma X, Yao T (2003) Diversity of 16s rDNA and environmental factor influencing microorganism in MaLan ice core. Chin Science Bull 48:1146–1151

    Article  CAS  Google Scholar 

  49. Zhang X, Yao T, An L, Tian L, Xu S (2006) Study on Vertical profile of Bacterial DNA Structure in Puruogangri Ice Core by Denaturing Gradient Gel Electrophoresis. Ann of Glaciol 43:160–166

    Article  CAS  Google Scholar 

  50. Zhang X, Yao T, Ma X (2002) Microorganism in a high Altitude Glacier Ice in Tibet, China. Folia Microbiologia 47:241–245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Zhang XJ for his assistance with ERIC-PCR analysis and to two anonymous reviewers for their valuable comments. This study was funded jointly by National Science Foundation of China grants 40671042, the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX1-1-02), and National Basic Research program of China (2005CB422000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.F., Yao, T.D., Tian, L.D. et al. Phylogenetic and Physiological Diversity of Bacteria Isolated from Puruogangri Ice Core. Microb Ecol 55, 476–488 (2008). https://doi.org/10.1007/s00248-007-9293-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9293-3

Keywords

Navigation