Skip to main content
Log in

Numerical analysis of steady turbulent triple jet flow with temperature difference

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The numerical predictions confirm a new classification of flow patterns of triple jet interaction. The addition of side jets increase the rate of decrease of the centreline velocity for the flow of type A and decreases in the other cases. The effect of various types of flow on the rate of decrease of the velocity, the turbulent kinetic energy and the temperature in the combined region are detailed. Several correlations are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

a:

Slot nozzle width (m)

Do :

Distance between two nozzles (m)

x, y:

Streamwise and transverse coordinate (m)

xS :

Stagnation point (m)

y0.5 :

Half width of the jet (m)

U:

Mean velocity in the x-direction (m s−1)

V:

Mean velocity in the y-direction (m s−1)

Ui, Uj :

Velocities components (m s−1)

U0 :

Jet exit mean velocity (m s−1)

U0C :

Central jet exit velocity (m s−1)

U0S :

Side jet exit velocity (m s−1)

\(\overline{{u_{i} u_{j} }}\) :

Reynolds stress component (m2 s−2)

Re:

Reynolds number

P:

Mean pressure (Pa)

T:

Mean temperature (K)

k:

Turbulent kinetic energy (m2 s−2)

λ:

Nozzle discharge velocity ratio

ω:

Specific dissipation rate (s−1)

ε:

Dissipation of turbulent energy (m2 s−3)

μ:

Dynamic viscosity (Kg m−1 s−1)

ν:

Kinematic viscosity (m2 s−1)

νt :

Turbulent eddy viscosity (m2 s−1)

νe :

Effective viscosity (m2 s−1)

ρ:

Density of air (Kgm−3)

t:

Turbulent

w:

Wall

C:

Cold temperature

H:

Hot temperature

References

  1. Tanaka E, Nakata S (1975) The interference of two-dimensional parallel jets (3rd Report, The Region near the Nozzles in Triple jets). Bull JSME 18(124):1134–1141

    Article  Google Scholar 

  2. Krothapalli A, Baganoff D, Karamchetti K (1981) On the mixing of a rectangular jet. J Fluid Mech 107:201–220

    Article  Google Scholar 

  3. Raghunathan S, Reid IM (1981) A study of multiple jets. AIAA J 19:124–127

    Article  Google Scholar 

  4. Elbanna H, Gahin S, Rashed MII (1982) Investigation of two plane parallel jets. AIAA J 21(7):986–991

    Article  Google Scholar 

  5. Jung JH, Yoo GJ (2004) Analysis of unsteady turbulent triple jet flow with temperature difference. J Nucl Sci Technol 41(9):931–942

    Article  Google Scholar 

  6. Nasr A, Lai JCS (1977) Comparison of flow characteristics in the near field of two parallel plane jets and an offset plane jet. Phys Fluid 9(10):2919–2931

    Article  Google Scholar 

  7. Kimura N, Miyakoshi H, Kamide H (2007) Experimental investigation on transfer characteristics of temperature fluctuation from liquid sodium to wall in parallel triple-jet. Int J Head Mass Transf 50(9):2024–2036

    Article  Google Scholar 

  8. Tokuhiro A, Kimura N (1999) An experimental investigation on thermal striping mixing phenomena of a vertical non-buoyant jet with two adjacent buoyant jets as measured by ultrasound doppler velocimetry. Nucl Eng Des 188(1):49–73

    Article  Google Scholar 

  9. Yamamoto K, Hishida K (2001) Quantitative visualisation of turbulent mixing in parallel triple plane jets. Exp Heat Transf Fluid Mech Thermodyn 2:1029–1034

    Google Scholar 

  10. Buddhika NH (2009) A numerical study of heat transfer performance of oscillatory impinging jets. Int J Heat Mass Transf 52(1):396–406

    MATH  Google Scholar 

  11. Salentey L (2002) Etude expérimentale du comportement de brûleurs à jets séparés. In: Application à la combustion gaz naturel-oxygène pur, Ph. D thesis, Faculté des Sciences et Techniques de l’Université de Rouen

  12. Lesieur C (2003) Modélisation de la combustion turbulente non-prémélangée dans un brûleur à jets séparés application à la stabilisation d’une oxy-flamme, PhD thesis, Institut National des Sciences Appliquées de Rouen

  13. Pani BS, Dash RN (1983) Three-dimensional single and multiple free jets. J Hydraul Eng ASCE 109(2):254–269

    Article  Google Scholar 

  14. Lin YF, Sheu MJ (1991) Interaction of parallel jets. AIAA J 29(9):1372–1373

    Article  Google Scholar 

  15. Marsters GF (1977) Interaction of two plane parallel jets. AIAA J 15(12):1756–1762

    Article  Google Scholar 

  16. Murai K, Taga M, Akagawa K (1976) An experimental study on confluence of two dimensional jets. Bull JSME 19(134):956–964

    Google Scholar 

  17. Grandmaison EW, Zettler NL (1989) Turbulent mixing in coflowing plane jets. Can J Chem Eng 67(6):889–897

    Article  Google Scholar 

  18. Koshigoe S, Gutmark E, Schadow K (1989) Initial development of non circular jets leading to axis switching. AIAA J 27:411–419

    Article  Google Scholar 

  19. Schadow KC, Gutmark E, Koshigoe S, Wilson KJ (1989) Combustion-related shear-flow dynamics in elliptic supersonic jets. AIAA J 27(10):1347–1353

    Article  Google Scholar 

  20. Laurence JC (1960) Turbulence studies of rectangular slotted noise-suppressor nozzle, NASA TECHNICAL NOTE D-294

  21. Becker HA, Booth BD (1975) AIChE J 21:949–958

    Article  Google Scholar 

  22. Cao Q, Lu D, Lv J (2012) Numerical investigation on temperature fluctuation of the parallel triple-jet. Nucl Eng Des 249:82–89

    Article  Google Scholar 

  23. Tenchine D, Vandroux S, Barthel V, Cioni O (2013) Experimental and numerical studies on mixing jets for sodium cooled fast reactors. Nucl Eng Des 263:263–272

    Article  Google Scholar 

  24. Svensson K, Rohdin P, Moshfegh B, Tummers M (2014) Numerical and experimental investigation of the near zone flow field in an array of confluent round jets. Int J Heat Fluid Flow 46:127–146

    Article  Google Scholar 

  25. Sforza PM, Steiger MH, Trentacoste N (1996) Studies on three-dimensional viscous jets. AIAA J 4(5):800–806

    Article  Google Scholar 

  26. Quinn WR (1992) Turbulent free jet flows issuing from sharp-edged rectangular slots: the influence of slot aspect ratio. Exp Thermal Fluid Sci 5:203–215

    Article  Google Scholar 

  27. Sabbagh JA, Aly MS (1993) Interaction of two-dimensional hot jet and two-dimensional cold jets. In: 24th conference, fluid dynamics, AIAA 93-3122, 1993, pp 1–9

  28. Stanleyy SA, Sarkar S, Mellado JP (2002) A study of the flow field evolution and mixing in a planar turbulent jet using direct numerical simulation. J Fluid Mech 450:377–407

    Article  Google Scholar 

  29. Gurunath K, Maniiarasan P, Senthilkumar S, Arulselnan K (2014) Investigation on low speed rectangular jet. IJES 3:60–65

    Google Scholar 

  30. Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Transf 15:301–304

    Article  Google Scholar 

  31. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51

    Article  MathSciNet  MATH  Google Scholar 

  32. Menter FR (1993) Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA Paper No. 1993–2906

  33. Wilcox DC (1993) Turbulence modelling for CFD. DCW Industries Inc, La Canada

    Google Scholar 

  34. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  35. Launder BE, Reece GJ, Rodi W (1975) Progress in the developments of a Reynolds-stress turbulence closure. J Fluid Mech 68:537–586

    Article  MATH  Google Scholar 

  36. Patankar SV (1980) Numerical heat transfer and fluid flow, series in computational methods in mechanics and thermal sciences. Hemisphere Publishing Corp & Mc Graw Hill, New York

    Google Scholar 

  37. Goertler H (1942) Berechnung von Aufgaben der freien Turbulenz auf Grund eines neuen Naherungsansatzes. ZAMM 22:244–254

    Article  Google Scholar 

  38. Tollmien W (1926) Berechnung turbulenter Ausbreitungsvorgange. ZAMM 6:468–478 (English translation, N.A.C.A. TM, 1085, 1945)

    Article  MATH  Google Scholar 

  39. Ramaprian BR, Chandrasekhara MS (1985) LDA measurements in plane turbulent jets. Trans ASME J Fluids Eng 107:264–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Mataoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouali, N., Mataoui, A. Numerical analysis of steady turbulent triple jet flow with temperature difference. Heat Mass Transfer 52, 315–330 (2016). https://doi.org/10.1007/s00231-015-1537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1537-z

Keywords

Navigation