Skip to main content
Log in

Drug-target based cross-sectional analysis of olfactory drug effects

  • Pharmacoepidemiology and Prescription
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Drug effects on the human sense of smell attract increasing interest, yet systematic evidence from controlled studies is sparse. The present cross-sectional approach to olfactory drug effects made use of the recent developments in informatics, knowledge discovery, and data mining allowing connecting drug-related information from humans with underlying molecular drug targets.

Methods

In this prospective cross-sectional study, n = 1008 outpatients at a general practitioner were enrolled. All currently taken medications were obtained, and olfactory function was assessed by means of a clinically established 12-item odor identification test. The association between the patients’ sense of smell and the administered medications was based (i) on the active pharmacological substances and (ii) on the molecular targets queried from the publicly accessible DrugBank database.

Results

Of the 168 different substances, six were taken sufficiently often to be analyzed. The administration of levothyroxine was associated with a higher olfactory score (p = 0.033). For the 168 drugs, 323 different targets could be queried. Thirty-one gene products were addressed sufficiently often to be analyzed. Besides agonistic targeting of thyroid hormone receptors (genes THRA1, THRB1) agreeing with the above result, antagonistically targeting the adrenoceptor alpha 1A (gene ADRA1A) by several unrelated medications was associated with a significantly higher olfactory score (p = 0.012).

Conclusions

The identified drug effects on olfaction are both biologically plausible based on supportive information from basic science studies. The novel molecular target-based approach suggested clear advantages over the classical drug or drug class-based approach. It increased the analyzable data volume fivefold and provided plausible hypotheses about mechanistic drug effects opening possibilities for drug discovery and repurposing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lötsch J, Geisslinger G, Hummel T (2012) Sniffing out pharmacology: interactions of drugs with human olfaction. Trends Pharmacol Sci 33(4):193–9

    Article  PubMed  Google Scholar 

  2. Damm M, Temmel A, Welge-Lüssen A, Eckel HE, Kreft MP, Klussmann JP et al (2004) Epidemiologie und Therapie von Riechstörungen in Deutschland, Österreich und der Schweiz. HNO 52:112–20

    Article  CAS  PubMed  Google Scholar 

  3. Hummel T, Nordin S (2005) Olfactory disorders and their consequences for quality of life. Acta Otolaryngol 125(2):116–21

    Article  PubMed  Google Scholar 

  4. Rinaldi A (2007) The scent of life. The exquisite complexity of the sense of smell in animals and humans. EMBO Rep 8(7):629–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Croy I, Nordin S, Hummel T (2014) Olfactory disorders and quality of life—an updated review. Chem Senses 39(3):185–94

    Article  PubMed  Google Scholar 

  6. Birkett D, Brosen K, Cascorbi I, Gustafsson LL, Maxwell S, Rago L et al (2010) Clinical pharmacology in research, teaching and health care: considerations by IUPHAR, the International Union of Basic and Clinical Pharmacology. Basic Clin Pharmacol Toxicol 107(1):531–59

    Article  PubMed  Google Scholar 

  7. Henkin RI (1994) Drug-induced taste and smell disorders. Incidence, mechanisms and management related primarily to treatment of sensory receptor dysfunction. Drug Saf Int J Med Toxicol Drug Exp 11(5):318–77

    Article  CAS  Google Scholar 

  8. Tuccori M, Lapi F, Testi A, Ruggiero E, Moretti U, Vannacci A et al (2011) Drug-induced taste and smell alterations: a case/non-case evaluation of an Italian database of spontaneous adverse drug reaction reporting. Drug Saf 34(10):849–59

    Article  CAS  PubMed  Google Scholar 

  9. Fröhlich R (1851) Ueber einige modificationen des geruchsinnes. Akad Wiss Wien Math Nat 6:322–8

    Google Scholar 

  10. Lötsch J, Darimont J, Skarke C, Zimmermann M, Hummel T, Geisslinger G (2001) Effects of the opioid remifentanil on olfactory function in healthy volunteers. Life Sci 69(19):2279–85

    Article  PubMed  Google Scholar 

  11. Oertel BG, Huynh TT, Hummel T, Lötsch J (2014) Lack of fluconazole effects on human chemosensation. Int J Clin Pharmacol Ther

  12. Walter C, Oertel BG, Ludyga D, Ultsch A, Hummel T, Lötsch J (2014) Effects of 20 mg oral Delta-tetrahydrocannabinol on the olfactory function of healthy volunteers. Br J Clin Pharmacol

  13. Czesnik D, Schild D, Kuduz J, Manzini I (2007) Cannabinoid action in the olfactory epithelium. Proc Natl Acad Sci U S A 104(8):2967–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gudziol V, Hummel C, Negoias S, Ishimaru T, Hummel T (2007) Lateralized differences in olfactory function. Laryngoscope 117(5):808–11

    Article  PubMed  Google Scholar 

  15. Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G (1997) ‘Sniffin’ Sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22(1):39–52

    Article  CAS  PubMed  Google Scholar 

  16. Kobal G, Hummel T, Sekinger B, Barz S, Roscher S, Wolf SR (1996) “Sniffin’ Sticks”: screening of olfactory performance. Rhinology 34:222–6

    CAS  PubMed  Google Scholar 

  17. Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41–55

    Article  Google Scholar 

  18. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–7, Database issue

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  20. Jójárt G (1992) Sense of smell after gentamicin nose-drops. Lancet 339(8788):313

    Article  PubMed  Google Scholar 

  21. McConnell RJ, Menendez CE, Smith FR, Henkin RI, Rivlin RS (1975) Defects of taste and smell in patients with hypothyroidism. Am J Med 59(3):354–64

    Article  CAS  PubMed  Google Scholar 

  22. Grossman S (1953) Loss of taste and smell due to propylthiouracil therapy. N Y State J Med 53(10):1236

    CAS  PubMed  Google Scholar 

  23. Alexander C, Bader JB, Schaefer A, Finke C, Kirsch CM (1998) Intermediate and long-term side effects of high-dose radioiodine therapy for thyroid carcinoma. J Nucl Med 39(9):1551–4

    CAS  PubMed  Google Scholar 

  24. Dhong H-J, Kim HY, Ha BS (2003) Histologic changes to olfactory epithelium in hypothyroid rats. Otolaryngol Head Neck Surg 129(1):24–32

    Article  PubMed  Google Scholar 

  25. Beard MD, Mackay-Sim A (1987) Loss of sense of smell in adult, hypothyroid mice. Brain Res 433(2):181–9

    Article  CAS  PubMed  Google Scholar 

  26. Johanson IB (1980) Development of olfactory and thermal responsiveness in hypothyroid and hyperthyroid rat pups. Dev Psychobiol 13(3):343–41

    Article  CAS  PubMed  Google Scholar 

  27. Paternostro M, Meisami E (1989) Selective effects of thyroid hormonal deprivation on growth and development of olfactory receptor sheet during the early postnatal period: a morphometric and cell count study in the rat. Int J Dev Neurosci 7(3):243–55

    Article  CAS  PubMed  Google Scholar 

  28. Hoyk Z, Szilágyi T, Halász N (1996) Modulation by thyroid hormones of the development of external plexiform layer in the rat olfactory bulb. Neurobiology (Bp) 4(1–2):45–57

    CAS  Google Scholar 

  29. Zhang L, Blomgren K, Kuhn HG, Cooper-Kuhn CM (2009) Effects of postnatal thyroid hormone deficiency on neurogenesis in the juvenile and adult rat. Neurobiol Dis 34(2):366–74

    Article  PubMed  Google Scholar 

  30. Walczak M, Pruszewicz A, Łacka K, Karlik M (2002) Olfaction in congenital hypothyroidism. Otolaryngol Pol 56(5):577–81

    PubMed  Google Scholar 

  31. Zimnik NC, Treadway T, Smith RS, Araneda RC (2013) α(1A)-Adrenergic regulation of inhibition in the olfactory bulb. J Physiol 591(Pt 7):1631–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Araneda RC, Firestein S (2006) Adrenergic enhancement of inhibitory transmission in the accessory olfactory bulb. J Neurosci 26(12):3292–8

    Article  CAS  PubMed  Google Scholar 

  33. Nai Q, Dong HW, Linster C, Ennis M (2010) Activation of alpha1 and alpha2 noradrenergic receptors exert opposing effects on excitability of main olfactory bulb granule cells. Neuroscience 169(2):882–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Young TM, Mathias CJ (2004) Taste and smell disturbance with the alpha-adrenoceptor agonist midodrine. Ann Pharmacother 38(11):1868–70

    Article  PubMed  Google Scholar 

  35. Mandairon N, Peace S, Karnow A, Kim J, Ennis M, Linster C (2008) Noradrenergic modulation in the olfactory bulb influences spontaneous and reward-motivated discrimination, but not the formation of habituation memory. Eur J Neurosci 27(5):1210–9

    Article  PubMed  Google Scholar 

  36. Gudziol V, Lötsch J, Hahner A, Zahnert T, Hummel T (2006) Clinical significance of results from olfactory testing. Laryngoscope 116(10):1858–63

    Article  PubMed  Google Scholar 

  37. Doty RL, Deems DA, Stellar S (1988) Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38(8):1237–44

    Article  CAS  PubMed  Google Scholar 

  38. Barz S, Hummel T, Kobal G (1997) Olfactory function in treated and untreated patients with Parkinson’s disease. Neurology 49(5):1424–31

  39. Lötsch J, Geisslinger G (2010) Bedside-to-bench pharmacology: a complementary concept to translational pharmacology. Clin Pharmacol Ther 87(6):647–9

    Article  PubMed  Google Scholar 

  40. Lötsch J, Hummel T (2015) Cannabinoid-related olfactory neuroscience in mice and humans. Chem Senses 40(1):3–5

  41. Seal RL, Gordon SM, Lush MJ, Wright MW, Bruford EA (2011) genenames.org: the HGNC resources in 2011. Nucleic Acids Res 39:D514–9, Database issue

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Funding

The research received funding from the “Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz: LOEWE-Schwerpunkt: Anwendungsorientierte Arzneimittelforschung” (JL). The funders had no role in method design, data selection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Additional information

Alfred Ultsch and Thomas Hummel contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lötsch, J., Daiker, H., Hähner, A. et al. Drug-target based cross-sectional analysis of olfactory drug effects. Eur J Clin Pharmacol 71, 461–471 (2015). https://doi.org/10.1007/s00228-015-1814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-1814-2

Keywords

Navigation