Skip to main content

Advertisement

Log in

Antarctic crustacean grazer assemblages exhibit resistance following exposure to decreased pH

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Anthropogenic atmospheric CO2 concentrations are increasing rapidly, resulting in declining seawater pH (ocean acidification). The majority of ocean acidification research to date has focused on the effects of decreased pH in single-species experiments. To assess how decreased pH may influence natural macroalgal-grazer assemblages, we conducted a mesocosm experiment with the common, chemically defended Antarctic brown macroalga Desmarestia menziesii and natural densities of its associated grazer assemblage, predominantly amphipods. Grazer assemblages were collected from the immediate vicinity of Palmer Station (64°46′S, 64°03′W) in March 2013. Assemblages were exposed for 30 days to three levels of pH representing present-day mean summer ambient conditions (pH 8.0), predicted near-future conditions (2100, pH 7.7), and distant-future conditions (pH 7.3). A significant difference was observed in the composition of mesograzer assemblages in the lowest pH treatment (pH 7.3). The differences between assemblages exposed to pH 7.3 and those maintained in the other two treatments were driven primarily by decreases in the abundance of the amphipod Metaleptamphopus pectinatus with decreasing pH, reduced copepod abundance at pH 7.7, and elevated ostracod abundance at pH 7.7. Generally, the assemblages maintained at pH 7.7 were not significantly different from those at ambient pH, demonstrating resistance to short-term decreased pH. The relatively high prevalence of generalist amphipods may have contributed to a net stabilizing effect on the assemblages exposed to decreased pH. Overall, our results suggest that crustacean grazer assemblages associated with D. menziesii, the dominant brown macroalgal species of the western Antarctic Peninsula, may be resistant to short-term near-future decreases in seawater pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alsterberg C, Eklöf JS, Gamfeldt L, Havenhand JN, Sundbäck K (2013) Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc Natl Acad Sci 110:8603–8608

    Article  CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2008) Macroalgal chemical defenses in polar marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 91–103

    Chapter  Google Scholar 

  • Amsler MO, Amsler CD, von Salm JL, Aumack CF, McClintock JB, Young RM, Baker BJ (2013) Tolerance and sequestration of macroalgal chemical defenses by an Antarctic amphipod: a ‘cheater’ among mutualists. Mar Ecol Prog Ser 490:79–90

    Article  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2014) Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. J Phycol 50:1–10

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Gattuso J-P (2011) Effects of ocean acidification on benthic processes, organisms, and ecosystems. In: Gattuso J-P, Hansson L (eds) ocean acidification. Oxford University Press, Oxford, pp 122–153

    Google Scholar 

  • Aumack CF (2010) Chemically mediated macroalgal-mesograzer interactions along the Western Antarctic Peninsula. Dissertation, Biology, The University of Alabama at Birmingham

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2011a) Changes in amphipod densities among macroalgal habitats in day versus night collections along the Western Antarctic Peninsula. Mar Biol 158:1879–1885

    Article  Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2011b) Impacts of mesograzers on epiphyte and endophyte growth associated with chemically defended macroalgae from the western Antarctic Peninsula: a mesocosm experiment. J Phycol 47:36–41

    Article  Google Scholar 

  • Baggini C, Issaris Y, Salomidi M, Hall-Spencer J (2015) Herbivore diversity improves benthic community resilience to ocean acidification. J Exp Mar Biol Ecol 469:98–104

    Article  Google Scholar 

  • Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Feely RA (2014) Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation. PLoS One 9:e109183

    Article  Google Scholar 

  • Byrne M (2011) Impacts of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Annu Rev 49:1–42

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  Google Scholar 

  • Celis-Plá PSM, Hall-Spencer JM, Horta P, Milazzo M, Korbee N, Cornwall CE, Figueroa FL (2015) Macroalgal responses to ocean acidification depend on nutrient and light levels. Front Mar Sci 2:26

    Article  Google Scholar 

  • Christen N, Calosi P, McNeill CL, Widdicombe S (2013) Structural and functional vulnerability to elevated pCO2 in marine benthic communities. Mar Biol 160:2113–2128

    Article  CAS  Google Scholar 

  • Cigliano M, Gambi MC, Rodolfo-Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6: user manual. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Connell SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD (2013) The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos Trans R Soc B 368:20120442

    Article  Google Scholar 

  • Cornwall CE, Boyd PW, McGraw CM, Hepburn CD, Pilditch CA, Morris JN, Smith AM, Hurd CL (2014) Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS One 9:e97235

    Article  Google Scholar 

  • Côté IM, Darling ES (2010) Rethinking ecosystem resilience in the face of climate change. PLoS Biol 8:e1000438

    Article  Google Scholar 

  • Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N, Heath P, Halliday NJ (2011) Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS One 6:e16069

    Article  CAS  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2 H2(g) and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3:1–175

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Ducklow HW, Fraser WR, Meredith MP, Stammerjohn SE, Doney SC, Martinson DG, Sailley SF, Schofield OM, Steinberg DK, Venables HJ, Amsler CD (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203

    Article  Google Scholar 

  • Eggers SL, Lewandowska AM, Barcelos e Ramos J, Blanco-Ameijeiras S, Gallo F, Matthiessen B (2014) Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Glob Change Biol 20:713–723

    Article  Google Scholar 

  • Eklöf JS, Alsterberg C, Havenhand JN, Sundbäck K, Wood HL, Gamfeldt L (2012) Experimental climate change weakens the insurance effect of biodiversity. Ecol Lett 15:864–872

    Article  Google Scholar 

  • Eklöf J, Donadi S, van der Heide T, van der Zee E, Eriksson B (2014) Effects of antagonistic ecosystem engineers on macrofauna communities in a patchy, intertidal mudflat landscape. J Sea Res 97:56–65

    Article  Google Scholar 

  • Eklöf JS, Havenhand JN, Alsterberg C, Gamfeldt L (2015) Community-level effects of rapid experimental warming and consumer loss outweigh effects of rapid ocean acidification. Oikos 124:1040–1049

    Article  Google Scholar 

  • Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Article  Google Scholar 

  • Ericson JA, Ho MA, Miskelly A, King CK, Virtue P, Tilbrook B, Byrne M (2011) Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biol 35:1027–1034

    Article  Google Scholar 

  • Falkenberg LJ, Russell BD, Connell SD (2012) Stability of strong species interactions resist the synergistic effects of local and global pollution in kelp forests. PLoS One 7:e33841

    Article  CAS  Google Scholar 

  • Falkenberg LJ, Russell BD, Connell SD (2013) Future herbivory: the indirect effects of enriched CO2 may rival its direct effects. Mar Ecol Prog Ser 492:85–95

    Article  CAS  Google Scholar 

  • Falkenberg LJ, Connell SD, Russell BD (2014) Herbivory mediates the expansion of an algal habitat under nutrient and CO2 enrichment. Mar Ecol Prog Ser 497:87–92

    Article  CAS  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581

    Article  Google Scholar 

  • Garrard SL, Gambi MC, Scipione MB, Patti FP, Lorenti M, Zupo V, Paterson DM, Buia MC (2014) Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. J Exp Mar Biol Ecol 461:31–38

    Article  Google Scholar 

  • Gattuso J-P, Magnan A, Billé R, Cheung W, Howes E, Joos F, Allemand D, Bopp L, Cooley S, Eakin C (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:aac4722

    Article  Google Scholar 

  • Ghedini G, Russell BD, Connell SD (2015) Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol Lett 18:182–187

    Article  Google Scholar 

  • Gonzalez-Bernat MJ, Lamare M, Barker M (2013) Effects of reduced seawater pH on fertilisation, embryogenesis and larval development in the Antarctic seastar Odontaster validus. Polar Biol 36:235–247

    Article  Google Scholar 

  • Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674

    Article  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  CAS  Google Scholar 

  • Harvey BP, Al-Janabi B, Broszeit S, Cioffi R, Kumar A, Aranguren-Gassis M, Bailey A, Green L, Gsottbauer CM, Hall EF (2014) Evolution of marine organisms under climate change at different levels of biological organisation. Water 6:3545–3574

    Article  Google Scholar 

  • Ho M, Price C, King C, Virtue P, Byrne M (2013) Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations. Mar Environ Res 90:136–141

    Article  CAS  Google Scholar 

  • Huang YM, Amsler MO, McClintock JB, Amsler CD, Baker BJ (2007) Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 30:1417–1430

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Field C B, Barros V R, Dokken D J, Mach K J, Mastrandrea M D, Bilir T E, Chatterjee M, Ebi K L, Estrada Y O, Genova R C, Girma B, Kissel E S, Levy A N, MacCracken S, Mastrandrea P R, WhiteL L (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Kapsenberg L, Hofmann GE (2014) Signals of resilience to ocean change: high thermal tolerance of early stage Antarctic sea urchins (Sterechinus neumayeri) reared under present-day and future pCO2 and temperature. Polar Biol 37:967–980

    Article  Google Scholar 

  • Kapsenberg L, Kelley AL, Shaw EC, Martz TR, Hofmann GE (2015) Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments. Sci Rep 5:9638

    Article  Google Scholar 

  • Kawaguchi S, Kurihara H, King R, Hale L, Berli T, Robinson JP, Ishida A, Wakita M, Virtue P, Nicol S, Ishimatsu A (2010) Will krill fare well under Southern Ocean acidification? Biol Lett 7:288–291

    Article  Google Scholar 

  • Krause-Jensen D, Duarte CM, Hendriks IE, Meire L, Blicher ME, Marbà N, Sejr MK (2015) Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord. Biogeosciences 12:4895–4911

    Article  Google Scholar 

  • Kroeker KJ, Gambi MC, Micheli F (2013) Community dynamics and ecosystem simplification in a high-CO2 ocean. P Natl Acad Sci 110:12721–12726

    Article  CAS  Google Scholar 

  • Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115

    Article  Google Scholar 

  • Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256

    Article  Google Scholar 

  • Pettit LR, Smart CW, Hart MB, Milazzo M, Hall-Spencer JM (2015) Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient. Ecol Evol 5:1784–1793

    Article  Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Article  Google Scholar 

  • Range P, Martins M, Cabral S, Piló D, Ben-Hamadou R, Teodósio MA, Leitão F, Drago T, Oliveira AP, Matias D (2014) Relative sensitivity of soft-bottom intertidal macrofauna to increased CO2 and experimental stress. Mar Ecol Prog Ser 509:153–170

    Article  Google Scholar 

  • Richardson MG (1977) The ecology (including physiological aspects) of selected Antarctic marine invertebrates associated with inshore macrophytes. PhD, Zoology, Durham University

  • Riebesell U, Tortell PD (2011) Effects of ocean acidification on pelagic organisms and ecosystems. In: Gattuso J-P, Hansson L (eds) ocean acidification. Oxford University Press, Oxford, pp 99–121

    Google Scholar 

  • Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc: a user-friendly seawater carbon calculator for Windows, Max OS S, and iOS (iPhone). US Geological Survey Open-File report 2010–1280 pp 1–17

  • Rossoll D, Bermúdez R, Hauss H, Schulz KG, Riebesell U, Sommer U, Winder M (2012) Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS One 7:e34737

    Article  CAS  Google Scholar 

  • Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campbell DM (1993) The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Mar Chem 44:249–267

    Article  CAS  Google Scholar 

  • Russell BD, Harley CDG, Wernberg T, Mieszkowska N, Widdicombe S, Hall-Spencer JM, Connell SD (2011) Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems. Biol Lett. doi:10.1098/rsbl.2011.0779

    Google Scholar 

  • Saba GK, Schofield O, Torres JJ, Ombres EH, Steinberg DK (2012) Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2). PLoS One 7:e52224

    Article  CAS  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, T-h Peng, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  Google Scholar 

  • Saderne V, Wahl M (2013) Differential responses of calcifying and non-calcifying epibionts of a brown macroalga to present-day and future upwelling pCO2. PLoS One 8:e70455

    Article  CAS  Google Scholar 

  • Schoenrock KM, Schram JB, Amsler CD, McClintock JB, Angus RA (2015) Climate change impacts on overstory Desmarestia spp. from the western Antarctic Peninsula. Mar Biol 162:377–389

    Article  Google Scholar 

  • Schoenrock KM, Schram JB, Amsler CD, McClintock JB, Angus RA (2016) Climate change confers a potential advantage to fleshy Antarctic crustose macroalgae over calcified species. J Exp Mar Biol Ecol 474:58–66

    Article  Google Scholar 

  • Schram JB (2015) Responses of marine benthic invertebrates of the western Antarctic Peninsula to ocean acidification and elevated temperature. Ph.D Dissertation, Biology, Birmingham, Alabama

  • Schram JB, Schoenrock KM, McClintock JB, Amsler CD, Angus RA (2014) Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropods. J Exp Mar Biol Ecol 457:90–96

    Article  Google Scholar 

  • Schram JB, Schoenrock KM, McClintock JB, Amsler CD, Angus RA (2015) Multi-frequency observations of seawater carbonate chemistry on the central coast of the western Antarctic Peninsula. Polar Res 34:25582

    Article  Google Scholar 

  • Schram JB, Schoenrock KM, McClintock JB, Amsler CD, Angus RA (2016) Testing Antarctic resilience: the effects of elevated seawater temperature and decreased pH on two gastropod species. ICES J Mar Sci J du Cons 73:739–752

    Article  Google Scholar 

  • Seibel BA, Maas AE, Dierssen HM (2012) Energetic plasticity underlies a variable response to ocean acidification in the pteropod Limacina helicina antarctica. PLoS One 7:e30464

    Article  CAS  Google Scholar 

  • Suckling CC, Clark MS, Richard J, Morley SA, Thorne MA, Harper EM, Peck LS (2014) Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures. J Anim Ecol 84:773–784

    Article  Google Scholar 

  • Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat Clim Change 3:843–847

    Article  CAS  Google Scholar 

  • Thurston MH (1972) The Crustacea Amphipoda of Signy Island. British Antarctic Survey and National Institute of Oceanography, South Orkney Islands 0856650161

    Google Scholar 

  • Tomas F, Martínez-Crego B, Hernán G, Santos R (2015) Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Glob Change Biol 21:1365–2486

    Article  Google Scholar 

  • Tortell PD, Asher EC, Ducklow HW, Goldman JA, Dacey JW, Grzymski JJ, Young JN, Kranz SA, Bernard KS, Morel FM (2014) Metabolic balance of coastal Antarctic waters revealed by autonomous pCO2 and ΔO2/Ar measurements. Geophys Res Lett 41:1–8

    Article  Google Scholar 

  • Trimborn S, Brenneis T, Sweet E, Rost B (2013) Sensitivity of Antarctic phytoplankton species to ocean acidification: growth, carbon acquisition, and species interaction. Limnol Oceanogr 58:997–1007

    Article  CAS  Google Scholar 

  • Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271

    Article  CAS  Google Scholar 

  • Wittmann AC, Pörtner H-O (2013) Sensitivities of extant animal taxa to ocean acidification. Nat Clim Change 3:995–1001

    Article  CAS  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. P Natl Acad Sci 96:1463–1468

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the outstanding science and logistical support staff of Antarctic Support Contract (ASC) for their invaluable help and support of the United States Antarctic Program (USAP). Kevin Scriber of the Department of Biology provided valuable field assistance. We also would like to acknowledge the constructive comments provided by two anonymous reviewers that helped improve this manuscript. The present study was supported by NSF award ANT-1041022 (JBM, CDA, RAA) from the Antarctic Organisms and Ecosystems program. The UAB Department of Biology and an Endowed Professorship in Polar and Marine Biology provided additional support to JBM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie B. Schram.

Additional information

Responsible Editor: P. Gagnon.

Reviewed by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schram, J.B., Amsler, M.O., Amsler, C.D. et al. Antarctic crustacean grazer assemblages exhibit resistance following exposure to decreased pH. Mar Biol 163, 106 (2016). https://doi.org/10.1007/s00227-016-2894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2894-y

Keywords

Navigation