Skip to main content

Advertisement

Log in

Climate change impacts on overstory Desmarestia spp. from the western Antarctic Peninsula

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study examines climate change impacts (increased temperature and pCO2) on canopy-forming Desmarestia anceps and D. menziesii from the western Antarctic Peninsula during the austral summer–winter of 2013. These are ecologically important species that play a role functionally equivalent to kelp forests in this region. Two-way factorial microcosm experiments with treatments reflecting near-future ocean conditions were run with these species and include increased temperature alone (3.5 °C × pH 8.0), reduced pH alone (1.5 °C × pH 7.6), and both factors combined (3.5 °C × pH 7.6). Phlorotannin concentration, chlorophyll a concentration, growth, and photosynthetic parameters (slope to saturation of photo centers (α), saturating irradiance (E k), maximum electron transport rate (ETRmax), and maximum quantum yield of photosystem II (F v/F m)) were used to assess the physiological responses of the individuals to the different climate change treatments. Few significant impacts were observed: In D. menziesii, E k at the midpoint (after 39 days) was significantly higher in the 3.5 °C × pH 7.6 treatment and phlorotannin concentration was significantly higher in the 1.5 °C × pH 7.6 treatment than others at the end point of the experiment (79 days). All individuals in the experiment grew quickly through the midpoint, but growth declined thereafter. The photosynthetic apparatus of these species acclimated to microcosm conditions, and photo-physiological parameters changed between initial, midpoint, and end point measurements. Results indicate that D. menziesii is the more sensitive of the two species and that climate change factors can have a synergistic effect on this species. However, neither species responds negatively to climate change factors at the level of change used in this study, though the observed shifts in phlorotannin concentration and photosynthetic characteristics may have an unforeseen impact on the community dynamics in this geographic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91. doi:10.1016/S0065-2296(05)43001-3

    Article  CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005a) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    Article  CAS  Google Scholar 

  • Amsler CD, Fairhead VA, Huang YM, Okogbue IN, Amsler MO, McClintock JB, Baker BJ (2005b) Chemical ecology of ecologically dominant Desmarestia spp. along the Western Antarctic Peninsula. Phycologia 44:2

    Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2014) Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. J Phycol 50:1–10

    Article  Google Scholar 

  • Ankisetty S, Nandiraju S, Win H, Park YC, Amsler CD, McClintock JB, Baker JA, Diyabalanage TK, Pasaribu A, Singh MP, Maiese WM, Walsh RD, Zaworotko MJ, Baker BJ (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic peninsula. J Nat Prod 67:1295–1302. doi:10.1021/np049965c

    Article  CAS  Google Scholar 

  • Aronson RB, Thatje S, McClintock JB, Hughes KA (2013) Anthropogenic impacts on marine ecosystems in Antarctica. Ann N Y Acad Sci 1223:82–107

    Article  Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755

    Article  CAS  Google Scholar 

  • Betancor S, Tuya F, Gil-Diaz T, Figueroa FL, Haroun R (2013) Effects of a submarine eruption on the performance of two brown seaweeds. J Sea Res 87:68–78

    Article  Google Scholar 

  • Birrell CL, McCook LJ, Willis BL, Diaz-Pulido GA (2008) Effects of benthic algae on the replenishment of corals and the implications for the resilience of corals reefs. Oceanogr Mar Bio Annu Rev 46:25–64

    Google Scholar 

  • Brown MB (2013) The effects of rising ocean temperature and pCO2 on the physiology and growth of giant kelp, Macrocystis pyrifera, and grazing by purple urchins Strongylocentrotus purpuratus. Masters Thesis, San Diego State University

  • Campbell AH, Harder T, Neilsen S, Kjelleberg S, Steinberg PD (2011) Climate change and disease: bleaching of a chemically defended seaweed. Glob Change Biol 17:2958–2970

    Article  Google Scholar 

  • Clarke A, Murphy E, Meredith M, King J, Peck L, Barnes D, Smith R (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans R Soc Lond B Biol Sci 367:149–166

    Article  Google Scholar 

  • Clayton MN (1994) Evolution of the Antarctic marine benthic algal flora. J Phycol 30:897–904

    Article  Google Scholar 

  • Cruces E, Huovinen P, Gomez I (2013) Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar Biol 160:1–13

    Article  CAS  Google Scholar 

  • Denman K, Christian JR, Steiner N, Portner H, Nojiri Y (2011) Potential impacts of future ocean acidification on marine ecosystems and fisheries: current knowledge and recommendation for future research. ICES J Mar Sci 68:1019–1029

    Article  Google Scholar 

  • Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony KRN (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162

    Article  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl (s) + 12H2 (g) = Ag (s) + HCl (aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practises for ocean CO2 measurements. PICES special publications, pp. 191

  • Drew EA, Hastings RM (1992) A year-round ecophysiological study of Himantothallus gradifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycologia 31:262–277

    Article  Google Scholar 

  • Ducklow HW, Fraser WR, Meredtih MP, Stammerjohn SE, Doney SC, Martinson DG, Sailley SF, Schofield OM, Steinberg DK, Venables HJ, Amsler CD (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203

    Article  Google Scholar 

  • Dupont S, Portner H (2013) Marine Science: get ready for ocean acidification. Nature 498:429

    Article  CAS  Google Scholar 

  • Elettra L, Storch D, Poertner HO, Mark CF (2014) Effects of ocean acidification and warming on the mitochondrial physiology of Atlantic cod. Biochim Biophys Acta (BBA) Bioenergentics 1837(suppl):e26

    Article  Google Scholar 

  • Fabry VJ, Seible BA, Feely RA, Orr RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005a) Variation in phlorotannin content within two species of brown macroalgae (Desmarestia anceps and D. menziesii) from the western Antarctic Peninsula. Polar Biol 28:680–686. doi:10.1007/s00300-005-0735-4

    Article  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005b) Within-thallus variation in chemical and physical defences in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. J Exp Mar Biol Ecol 322:1–12. doi:10.1016/j.jembe.2005.01.010

    Article  CAS  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2006) Lack of defense of phlorotannin induction by UV radiation or mesograzers in Desmarestia anceps and D. menziesii (Pheaophyceae). J Phycol 42:1174–1183

    Article  CAS  Google Scholar 

  • Falkenberg LJ, Russell BD, Connell SD (2013) Contrasting resource limitations of marine primary producers: implaications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172:575–583

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of antropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  CAS  Google Scholar 

  • Gomez I, Huovinen P (2012) Morpho-functionality of Carbon Metabolism in Seaweeds. In: Bischof CWaK (ed) Seaweeds Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, New york, pp 25–46

  • Gomez I, Wulff A, Roleda MY, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2009) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot Mar 52:593–608

    Article  Google Scholar 

  • Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine organisms. Ann N Y Acad Sci 1134:320–342

    Article  CAS  Google Scholar 

  • Hall-Spencer JM, Kelly J, Maggs C (2008) Assessment of maerl beds in the OSPAR area and the development of a monitoring program. In: Department of the Environment HaLG, Ireland (ed). DEHLG, Ireland

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    Article  CAS  Google Scholar 

  • Hofmann L, Straub S, Bischof K (2012) Competition between calcifying and noncalcifying temperte marine macroalgae under elevated CO2 levels. Mar Ecol Prog Ser 464:89–105

    Article  CAS  Google Scholar 

  • Hu MY, Guh Y-J, Stumpp M, Lee J-R, Chen R-D, sung P-H, Chen Y-C, Hwang P-P, Tseng Y-C (2014) Branchial NH4 + -dependant acid-base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Front Zool 11:55

    Google Scholar 

  • Iken K, Amsler CD, Hubbard JM, McClintock JB, Baker BJ (2007) Allocation patterns of phlorotannins in Antarctic brown algae. Phycologia 46:386–395. doi:10.2216/06-67.1

    Article  Google Scholar 

  • Iken K, Amsler CD, Amsler MO, McClintock JB, Baker BJ (2009) Field studies on deterrent properties of phlorotannins in Antarctic brown algae. Bot Mar 52: 547–557 doi 10.1515/Bot.2009.071

  • IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis contribution of working group i to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Johnson V, Russell B, Fabricius K, Brownlee A, Hall-Spencer J (2012) Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob Change Biol 18:2792–2803

    Article  Google Scholar 

  • Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. In: Amsler CD (ed) Algal Chemical Ecology. Springer, Berlin, pp 57–89

    Chapter  Google Scholar 

  • Kelley M, Hofmann G (2012) Adaptation and the physiology of ocean acidification. Fuct Ecol. doi:10.1111/j.1365-2435.2012.02061.x

    Google Scholar 

  • Koivikko R, Loponen J, Honkanen T, Jormalainen V (2005) Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J Chem Ecol 31:195–212

    Article  CAS  Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Nat Acad Sci 108:14515–14520

    Article  CAS  Google Scholar 

  • Kroeker KJ, Gambi MC, Micheli F (2013) Community dynamics and ecosystem simplification in a high-CO2 ocean. Proc Nat Acad Sci 110:12721–12726

    Article  CAS  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797

    Article  CAS  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • Meredith M, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604

    Article  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  Google Scholar 

  • Olischläger M, Bartsch I, Gutow L, Wiencke C (2012) Effects of Ocean Acidification on different life-cycle stages of the kelp Laminaria hyperborea (Phaeophyceae). Bot Mar 55: 511-525

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Mattear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct Sci 17:497–507

    Article  Google Scholar 

  • Rautenberger R, Wiencke C, Bischof K (2013) Acclimation to UV radiation and antioxidative defence in the endemic Antarctic brown macroalga Desmarestia anceps along a depth gradient. Polar Biol 36:1779–1789

    Article  Google Scholar 

  • Riebesell U, Bellerby RGJ, Engel A, Fabry VJ, Hutchins DA, Reusch TBH, Schulz KG, Morel FMM (2008) Comment on “Phytoplankton calcification in a High-CO2 workd”. Science 322:1466b

    Article  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2010) Guide to best practices for ocean acidification research and data reporting. Publications office of the European Union, Luxembourg

    Google Scholar 

  • Ries J, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Robbins LL, Hansen ME, Kleypas JA, Maylan SC (2010) CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone). In: U.S. Department of the Interior U (ed). U.S. Geological Survey, Virginia

  • Roleda MY, Hurd C (2012) Seaweed Responses to Ocean Acidification. In: Bischof CWaK (ed) Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, New York, pp 407–431

  • Roleda MY, Morris JN, McGraw CM, Hurd CL (2012) Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob Change Biol 18:854–864

    Article  Google Scholar 

  • Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campbel DM (1993) The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45 C. Mar Chem 44:249–267

    Article  CAS  Google Scholar 

  • Saderne V (2012) The ecological effect of CO2 on the brown algae Fucus serratus and its epibionts: from the habitat to the organismic scale. Mathematics and Natural Sciences, Kiel

    Google Scholar 

  • Schloss IR, Abele D, Moreau S, Demers S, Bers AV, González O, Ferreyra GA (2012) Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove Antarctica. J Mar Syst 92:53–66

    Article  Google Scholar 

  • Short JA, Kendrick GA, Falter J, McCulloch MT (2014) Interactions between filamentous turf algae and coralline algae are modified under ocean acidification. J Exp Mar Biol Ecol 456:70–77

    Article  Google Scholar 

  • Sinutok S, Hill R, Doblin M, Kuhl M, Ralph P (2012) Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31:1201–1213

    Article  Google Scholar 

  • Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457:459–462

    Article  CAS  Google Scholar 

  • Stern JL, Hagerman AE, Steinberg PD, Mason PK (1996) Phlorotannins–protein interactions. J Chem Ecol 22:1877–1899

    Article  CAS  Google Scholar 

  • Swanson A, Fox C (2007) Altered kelp (Laminariales) phlorotanins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs. Globl Change Biol 13:1696–1709

    Article  Google Scholar 

  • Targett NM, Arnold TM (1999) Minireview- Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205

    Article  Google Scholar 

  • Turley C (2013) Ocean acidification. In: Noone KJ, Sumaila UR, Diaz RJ (eds) Managing ocean environments in changing climate: sustainability and economic perspectives. Elsevier, Amsterdam, pp 15–44

    Chapter  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Wanninkhof RH (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res Oceans (1978–2012) 97:7373–7382

    Article  Google Scholar 

  • Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can physiology tell us? J Exp Mar Biol Ecol 366:187–197

    Article  Google Scholar 

  • Wiencke C (1990) Seasonality of brown macroalgae from Antarctica—a long term culture study under fluctuating Antarctic daylengths. Polar Biol 10:601–607

    Article  Google Scholar 

  • Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions seaweed biology. Springer, Berlin, pp 265–291

    Google Scholar 

  • Wiencke C, tom Dieck IT (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and Southern Chile. Mar Ecol Prog Ser 59:157–170

    Article  Google Scholar 

  • Wiencke C, Clayton MN, Gomez I, Iken K, Luder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6:95–126. doi:10.1007/s11157-006-9106-z

    Article  Google Scholar 

  • Wiencke C, Amsler CD, Clayton MN (2014) Macroalgae. In: Van De Putte A, Danis B, David B, Grant S, Gutt S, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y, De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz CD (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 66–73

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation award ANT-1041022 (CDA, RAA, JBM) from the Antarctic Organisms and Ecosystems Program. Field support was provided by the Antarctic Support Contract staff of Palmer Station and the University of Alabama at Birmingham field team including Maggie Amsler and Kevin Scriber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn M. Schoenrock.

Additional information

Communicated by K. Bischof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoenrock, K.M., Schram, J.B., Amsler, C.D. et al. Climate change impacts on overstory Desmarestia spp. from the western Antarctic Peninsula. Mar Biol 162, 377–389 (2015). https://doi.org/10.1007/s00227-014-2582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2582-8

Keywords

Navigation