We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Fatty acid signature analysis documents the diet of five myctophid fish from the Southern Ocean

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Fatty acid (FA) and fatty alcohol (FAlc) compositions of both total lipid and neutral lipid fractions were studied for five myctophid species sampled in Kerguelen waters. Both qualitative and quantitative FA signature analyses were then performed to investigate their diet over longer time scales than the conventional stomach content analysis. Regarding their lipid class, FA and FAlc compositions, the five species could be discriminated into two groups: wax-ester-rich species (Electrona antarctica, Krefftichthys anderssoni) characterised by large amounts of monounsaturated FAs (>73% of total FAs) and triacylglycerol-rich species (Electrona carlsbergi, Gymnoscopelus nicholsi, Protomyctophum bolini) with major amounts of saturated and monounsaturated FAs (>29 and >46% of total FAs, respectively). Qualitative and quantitative FA analyses showed that K. anderssoni mainly preyed upon copepods, E. antarctica upon copepods and more euphausiids and P. bolini and E. carlsbergi mainly upon euphausiids with some copepods, while G. nicholsi had a more diverse diet. This study shows the usefulness of quantitative statistical analysis to determine the diet of Antarctic and sub-Antarctic predators and stresses the need of increasing the lipid and FA analyses of more zooplanktonic and micro-nektonic marine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackman RG (1981) Application of flame ionization detectors to thin layer chromatography on coated quartz rods. Method Enzymol 72:205–252

    Article  CAS  Google Scholar 

  • Ackman RG (1989) Marine biogenic lipids, fats, and oils, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Ackman RG, Hooper SN, Epstein S, Kelleher M (1972) Wax esters of Barracuda lipid: a potential replacement for sperm whale oil. J Am Oil Chem Soc 49:378–382

    Article  CAS  Google Scholar 

  • Bauermeister A, Sargent JR (1979) Wax esters: major metabolites in the marine environment. Trends Biochem Sci 4:209–211

    Article  CAS  Google Scholar 

  • Bell MV, Henderson RJ, Sargent JR (1986) The role of polyunsaturated fatty acids in fish. Comp Biochem Physiol B 83:711–719

    Article  CAS  PubMed  Google Scholar 

  • Benzecri JP (1973) L’analyse des données. Tome II—L’analyse des correspondances. Dunod, Paris

    Google Scholar 

  • Bernard KS (2002) Mesozooplankton community structure and grazing impact in the polar frontal zone of the Southern Ocean. Master’s thesis, Rhodes University

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  • Bocher P, Cherel Y, Alonzo F, Razouls S, Labat J-P, Mayzaud P, Jouventin P (2002) Importance of the large copepod Paraeuchaeta antarctica (Giesbrecht, 1902) in coastal waters and the diet of seabirds at Kerguelen, Southern Ocean. J Plank Res 24:1317–1333

    Article  Google Scholar 

  • Cherel Y, Verdon C, Ridoux V (1993) Seasonal importance of oceanic myctophids in king penguin diet at Crozet Islands. Polar Biol 13:355–357

    Google Scholar 

  • Cherel Y, Guinet C, Tremblay Y (1997) Fish prey of Antarctic fur seals Arctocephalus gazella at Ile de Croy, Kerguelen. Polar Biol 17:87–90

    Article  Google Scholar 

  • Cherel Y, Hobson KA, Weimerskirch H (2005) Using stable isotopes to study resource acquisition and allocation in procellariiform seabirds. Oecologia 145:533–540

    Article  CAS  PubMed  Google Scholar 

  • Cherel Y, Ducatez S, Fontaine C, Richard P, Guinet C (2008) Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Mar Ecol Prog Ser 370:239–247

    Article  Google Scholar 

  • Cherel Y, Fontaine C, Richard P, Labat J-P (2010) Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol Oceanogr 55:324–332

    CAS  Google Scholar 

  • Collins MA, Xavier JC, Johnston NM, North AW, Enderlein P, Tarling GA, Waluda CM, Hawker EJ, Cunningham NJ (2008) Patterns in the distribution of myctophid fish in the northern Scotia Sea ecosystem. Polar Biol 31:837–851

    Article  Google Scholar 

  • Commission for the Conservation of Antarctic Marine Living Resources (2010) Statistical bulletin, vol 22. CCAMLR report

  • Connan M, Mayzaud P, Boutoute M, Weimerskirch H, Cherel Y (2005) Lipid composition of stomach oil in a procellariiform seabird Puffinus tenuirostris: implications for food web studies. Mar Ecol Prog Ser 290:277–290

    Article  CAS  Google Scholar 

  • Connan M, Cherel Y, Mayzaud P (2007) Lipids from stomach oil of procellariiform seabirds document the importance of myctophid fish in the Southern Ocean. Limnol Oceanogr 52:2445–2455

    Article  CAS  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment: a review. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • Duhamel G, Koubbi P, Ravier C (2000) Day and night fish assemblages off the Kerguelen Islands (Southern Ocean). Polar Biol 23:106–112

    Article  Google Scholar 

  • Duhamel G, Gasco N, Davaine P (2005) Poissons des îles Kerguelen et Crozet—Guide régional de l’Océan Austral. Patrimoines naturels 63, Museum National d’Histoire Naturelle, Paris

  • Errhif A, Razouls C, Mayzaud P (1997) Composition and community structure of pelagic copepods in the Indian sector of the Antarctic Ocean during the end of the austral summer. Polar Biol 17:418–430

    Article  Google Scholar 

  • Flores H, Van de Putte AP, Siegel V, Pakhomov EA, van Franeker JA, Meesters EHWG, Volckaert FAM (2008) Distribution, abundance and ecological relevance of pelagic fishes in the Lazarev Sea, Southern Ocean. Mar Ecol Prog Ser 367:271–282

    Article  Google Scholar 

  • Fraser AJ, Sargent JR, Gamble JC, Seaton DD (1989) Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton. Zooplankton and herring (Clupea harengus L.) larvae. Mar Chem 27:1–18

    Article  CAS  Google Scholar 

  • Gaskett AC, Bulman C, He X, Goldsworthy SD (2001) Diet composition and guild structure of mesopelagic and bathypelagic fishes near Macquarie Island, Australia. NZ J Mar Fresh Res 35:469–476

    Article  Google Scholar 

  • Gay DM (1983) Algorithm 611. Subroutines for unconstrained minimization using a model/trust-region approach. ACM Trans Math Softw 9:503–524

    Article  Google Scholar 

  • Gon O, Heemstra PC (1990) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown

    Google Scholar 

  • Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic press, London, 364 p

  • Guinet C, Cherel Y, Ridoux V, Jouventin P (1996) Consumption of marine resources by seabirds and seals in Crozet and Kerguelen waters: changes in relation to consumer biomass 1962–85. Antarct Sci 8:23–30

    Article  Google Scholar 

  • Gurr MI, Harwood JL (1991) Lipid biochemistry—an introduction, 4th edn. Chapman and Hall, London

    Google Scholar 

  • Hecht T, Hecht A (1987) A guide to the otoliths of Southern Ocean fishes. S Afr J Antarct Res 17:1–87

    Google Scholar 

  • Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786–798

    Article  Google Scholar 

  • Horgan IE, Barrett JA (1985) The use of lipid profiles in comparing the diet of seabirds. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 493–497

    Google Scholar 

  • Iverson SJ, Lang SLC, Cooper MH (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Iverson SJ, Field C, Bowen WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74:211–235

    Article  Google Scholar 

  • Kattner G, Hagen W (1995) Polar herbivorous copepods–Different pathways in lipid biosynthesis. ICES J Mar Sci 52:329–335

    Article  Google Scholar 

  • Kirsch PE, Iverson S, Bowen WD, Kerr S, Ackman RG (1998) Dietary effects on the fatty acid signatures of whole Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55:1378–1386

    Article  CAS  Google Scholar 

  • Koubbi P, Ibanez F, Duhamel G (1991) Environmental influences on spatio-temporal oceanic distribution of ichthyoplankton around the Kerguelen Islands (Southern Ocean). Mar Ecol Prog Ser 72:225–238

    Article  Google Scholar 

  • Kozlov AN (1995) A review of the trophic role of mesopelagic fish of the family myctophidae in the Southern Ocean ecosystem. CCAMLR Sci 2:71–77

    Google Scholar 

  • Kozlov AN, Tarverdiyeva MI (1989) Feeding of different species of myctophidae in different parts of the Southern Ocean. J Ichthyol 29:160–167

    Google Scholar 

  • Lancraft TM, Torres JJ, Hopkins TL (1989) Micronekton and macrozooplankton in the open waters near Antarctic ice edge zones (AMERIEZ 1983 and 1986). Polar Biol 9:225–233

    Article  Google Scholar 

  • Lea MA, Nichols PD, Wilson G (2002) Fatty acid composition of lipid-rich myctophids and mackerel icefish (Champsocephalus gunnari)—Southern Ocean food-web implications. Polar Biol 25:843–854

    Google Scholar 

  • Lee RF, Patton JS (1989) Alcohol and waxes. In: Ackman RG (ed) Marine biogenic lipids, fats and oils, vol I. CRC Press, Boca Raton, pp 73–102

    Google Scholar 

  • Lubimova TG, Shust KV, Popkov VV (1987) Some features of the ecology of mesopelagic fish of family Myctophidae in the Southern Ocean. Biological resources of the Arctic and Antarctic (in Russian). Nauka, Moscow

    Google Scholar 

  • Mayzaud P, Laureillard J, Merien D, Brinis A, Godard C, Razouls S, Labat J-P (2007) Zooplankton nutrition, storage lipid composition in different water masses associated with the Agulhas and Subtropical Fronts and resultant composition of the feces. Mar Chem 107:202–213

    Article  CAS  Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    CAS  PubMed  Google Scholar 

  • Neighbors MA, Nafpaktitis BG (1982) Lipid compositions, water contents, swimbladder morphologies and buoyancies of nineteen species of midwater fishes (18 myctophids and 1 neoscopelid). Mar Biol 66:207–215

    Article  CAS  Google Scholar 

  • Pakhomov EA, Perissinotto R, McQuaid CD (1996) Prey composition and daily rations of myctophid fishes in the Southern Ocean. Mar Ecol Prog Ser 134:1–14

    Article  Google Scholar 

  • Park T (1994) Geographic distribution of bathypelagic genus Paraeuchaeta (Copepoda, Calanoida). Hydrobiologia 292(293):317–332

    Google Scholar 

  • Parrish CC, McKenzie CH, MacDonald BA, Hatfield EA (1995) Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar Ecol Prog Ser 129:151–164

    Article  CAS  Google Scholar 

  • Patton JS, Nevenzel JC, Benson AA (1975) Specificity of digestive lipases in hydrolysis of wax esters and triglycerides studied in anchovy and other selected fish. Lipids 10:575–583

    Article  CAS  PubMed  Google Scholar 

  • Perissinotto R, McQuaid CD (1992) Land-based predator impact on vertically migrating zooplankton and micronekton advected to a Southern Ocean archipelago. Mar Ecol Prog Ser 80:15–27

    Article  Google Scholar 

  • Phleger CF (1998) Buoyancy in marine fishes: direct and indirect role of lipids. Am Zool 38:321–330

    CAS  Google Scholar 

  • Phleger CF, Nichols PD, Virtue P (1997) The lipid, fatty acid and fatty alcohol composition of the myctophid fish Electrona antarctica: high level of wax esters and food-chain implications. Antarct Sci 9:258–265

    Article  Google Scholar 

  • Phleger CF, Nichols PD, Virtue P (1998) Lipids and trophodynamics of Antarctic zooplankton. Comp Biochem Physiol B 120:311–323

    Article  Google Scholar 

  • Phleger CF, Nelson MM, Mooney BD, Nichols PD (1999) Wax esters versus triacylglycerols in myctophid fishes from the Southern Ocean. Antarct Sci 11:436–444

    Article  Google Scholar 

  • Push C, Hulley PA, Kock K-H (2004) Community structure and feeding ecology of mesopelagic fishes in the slope waters of King George Island (South Shetland Islands, Antarctica). Deep-Sea Res I 51:1685–1708

    Google Scholar 

  • Reinhardt SB, Van Vleet ES (1986) Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish. Mar Biol 91:149–159

    Article  CAS  Google Scholar 

  • Rodhouse PG, White MG (1995) Cephalopods occupy the ecological niche of epipelagic fish in the Antarctic Polar frontal zone. Biol Bull 189:77–80

    Article  Google Scholar 

  • Sabourenkov E (1991) Mesopelagic fish of the Southern Ocean—summary results of recent Soviet studies. In: Selected scientific papers, 1990 (SC-CAMLR-SSP/8). Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR), pp 433–457

  • Saito H, Murata M (1996) The high content of monoene fatty acids in the lipids of some midwater fishes: family Myctophidae. Lipids 31:757–763

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Murata M (1998) Origin of the monoene fats in the lipid of midwater fishes: relationship between the lipids of myctophids and those of their prey. Mar Ecol Prog Ser 168:21–33

    Article  CAS  Google Scholar 

  • Sand DM, Hehl JL, Schlenk H (1971) Biosynthesis of wax esters in fish. Metabolism of dietary alcohols. Biochemistry 10:2536–2541

    Article  CAS  PubMed  Google Scholar 

  • Sargent JR (1976) The structure, metabolism, and function of lipids in marine organisms. In: Malins DC, Sargent JR (eds) Biochemical and biophysical perspectives in marine biology, vol III. Academic Press, London, pp 149–212

    Google Scholar 

  • Seo H-S (2001) Wax ester biosynthesis in the liver of myctophid fishes. Tohoku J Agric Res 51:87–97

    CAS  Google Scholar 

  • Shreeve RS, Collins MA, Tarling GA, Main CE, Ward P, Johnston NM (2009) Feeding ecology of myctophid fishes in the northern Scotia Sea. Mar Ecol Prog Ser 386:221–236

    Article  Google Scholar 

  • Stowasser G, Pond D, Collins MA (2009) Using fatty acid analysis to elucidate the feeding habits of Southern Ocean mesopelagic fish. Mar Biol 156:2289–2302

    Article  CAS  Google Scholar 

  • Stubbs CD, Smith AD (1990) Essential fatty acids in membrane: physical properties and function. Biochem Soc Trans 18:779–781

    CAS  PubMed  Google Scholar 

  • Suntsov AV, Brodeur RD (2008) Trophic ecology of three dominant myctophid species in the northern California Current region. Mar Ecol Prog Ser 373:81–96

    Article  Google Scholar 

  • Tierney M, Nichols PD, Wheatley KE, Hindell MA (2008) Blood fatty acids indicate inter- and intra-annual variation in the diet of Adélie penguins: comparison with stomach content and stable isotope analysis. J Exp Mar Biol Ecol 367:65–74

    Article  CAS  Google Scholar 

  • Williams R, McEldowney A (1990) A guide to the fish otoliths from waters off the Australian Antarctic Territory, Heard and Macquarie Islands. Australian Antarctic Division, Kingston

    Google Scholar 

Download references

Acknowledgments

We would like to thank the crew of MV La Curieuse and all the scientific assistants of the IPEKER and ICHTYOKER cruises who collected the fish under a MNHN protocol, CF Phleger, PD Nichols, MM Nelson, KL Phillips and G Wilson for generously supplying detailed chromatographic data of some of the potential prey species and M. Boutoute for helping with the lipid analyses. Discussions with B Hulley and P Koubbi greatly improved the manuscript, as well as comments from both reviewers, and we sincerely thank L Allan for help with English grammar and style. The fieldwork was supported financially and logistically by the Institut Polaire Français Paul Emile Victor (IPEV, Programme no. 109, H Weimerskirch) and the Terres Australes et Antarctiques Françaises. This research was supported by CNRS through UMR 7093 and UPR 1934, and a doctoral scholarship to MC from Paris VI University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maëlle Connan.

Additional information

Communicated by M. A. Peck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connan, M., Mayzaud, P., Duhamel, G. et al. Fatty acid signature analysis documents the diet of five myctophid fish from the Southern Ocean. Mar Biol 157, 2303–2316 (2010). https://doi.org/10.1007/s00227-010-1497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1497-2

Keywords

Navigation