Skip to main content
Log in

Mice Rendered Severely Deficient in Megakaryocytes through Targeted Gene Deletion of the Thrombopoietin Receptor c-Mpl Have a Normal Skeletal Phenotype

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

To explore whether a functional relationship exists between megakaryocytes and the cellular processes responsible for bone formation, we examined if Mpl −/− mice, which are severely megakaryocyte-deficient through c-Mpl gene deletion, have an abnormal skeletal phenotype compared to Mpl +/− and wild-type littermates. We also analyzed whether the osteogenic response to high-dose estrogen treatment is altered in Mpl −/− mice. Megakaryocyte numbers and skeletal indices were compared between Mpl −/− mice and littermate Mpl +/− and wild-type 12-week-old mice (six per group). Dual-energy X-ray absorbtiometry of whole body, excised tibias, and femurs was performed. Histomorphometric analyses of the proximal metaphysis and mid-diaphysis were carried out on longitudinal and transverse sections, respectively. Histomorphometry was performed on the proximal tibial metaphysis of four Mpl −/− and four wild-type mice following high-dose estrogen treatment (0.5 mg/animal/week) for 4 weeks. Mpl −/− mice had 10% the megakaryocyte number of Mpl +/− and wild-type littermates. Bone mineral density values in Mpl −/− mice were identical to those in Mpl +/− and wild-type mice for whole body, femur, and tibia. Histomorphometric analysis demonstrated that cancellous and cortical tibial bone parameters were similar across all genotypes. The osteogenic response to estrogen treatment was indistinguishable between Mpl −/−and wild-type mice. We found that mice severely deficient in megakaryocytes have a normal skeletal phenotype. Additionally, the deficiency did not diminish the osteogenic marrow response to high-dose estrogen treatment. These results represent the first in vivo evidence that severe megakaryocyte deficiency does not affect bone formation, suggesting that this process is not dependent on normal megakaryocyte number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Breton-Gorius J, Clezardin P, Guichard J, Debili N, Malaval L, Vainchenker W, Cramer EM, Delmas PD (1992) Localization of platelet osteonectin at the internal face of the alpha-granule membranes in platelets and megakaryocytes. Blood 79:936–941

    PubMed  CAS  Google Scholar 

  2. Kelm RJ Jr, Hair GA, Mann KG, Grant BW (1992) Characterization of human osteoblast and megakaryocyte-derived osteonectin (SPARC). Blood 80:3112–3119

    PubMed  CAS  Google Scholar 

  3. Chenu C, Delmas PD (1992) Platelets contribute to circulating levels of bone sialoprotein in human. J Bone Miner Res 7:47–54

    Article  PubMed  CAS  Google Scholar 

  4. Frank JD, Balena R, Masarachia P, Seedor JG, Cartwright ME (1993) The effects of three different mineralization agents on osteopontin localization in adult rat bone using immunohistochemistry. Histochemistry 99:295–301

    Article  PubMed  CAS  Google Scholar 

  5. Thiede MA, Smock SL, Petersen DN, Grasser WA, Thompson DD, Nishimoto SK (1994) Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology 135:929–937

    Article  PubMed  CAS  Google Scholar 

  6. Wickenhauser C, Hillienhof A, Jungheim K, Lorenzen J, Ruskowski H, Hansmann ML, Thiele J, Fischer R (1995) Detection and quantification of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF) release by normal human megakaryocytes. Leukemia 9:310–315

    PubMed  CAS  Google Scholar 

  7. Yan XQ, Lacey D, Hill D, Chen Y, Fetcher F, Hawley RG, McNiece IK (1996) A model of myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation. Blood 88:402–409

    PubMed  CAS  Google Scholar 

  8. Bord S, Vedi S, Beaven SR, Horner A, Compston JE (2000) Megakaryocyte population in human bone marrow increases with estrogen treatment: a role in bone remodelling? Bone 27:397–401

    Article  PubMed  CAS  Google Scholar 

  9. Sipe JB, Zhang J, Waits C, Skikne B, Garimella R, Anderson HC (2004) Localization of bone morphogenetic proteins (BMPs)-2, and -6 within megakaryocyes and platelets. Bone 35:1316–1322

    Article  PubMed  CAS  Google Scholar 

  10. Garimella R, Kacena MA, Tague SE, Wang J, Horowitz MC, Anderson HC (2007) Expression of bone morphogenetic proteins and their receptors in the bone marrow megakaryocytes of GATA-1low mice: a possible role in osteosclerosis. J Histochem Cytochem 55:745–752

    Article  PubMed  CAS  Google Scholar 

  11. Miao D, Murant S, Scutt, Genever P, Scutt A (2004) Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation and alkaline phosphatase expression in vitro. Tissue Eng 10:807–817

  12. Beeton CA, Bord S, Ireland D, Compston JE (2006) Osteoclast formation and bone resorption are inhibited by megakaryocytes. Bone 39:985–990

    Article  PubMed  CAS  Google Scholar 

  13. Kacena MA, Nelson T, Clough ME, Lee SK, Lorenzo JA, Gundberg CM, Horowitz MC (2006) Megakaryocyte-mediated inhibition of osteoclast development. Bone 39:991–999

    Article  PubMed  CAS  Google Scholar 

  14. Chagraoui H, Sabri S, Capron C, Villeval JL, Vainchenker W, Wendling F (2003) Expression of osteoprotegerin mRNA and protein in murine megakaryocytes. Exp Hematol 31:1081–1088

    Article  PubMed  CAS  Google Scholar 

  15. Bord S, Frith E, Ireland DC, Scott MA, Craig JIO, Compston JE (2004) Synthesis of osteoprotegerin and RANKL by megakaryocytes is modulated by oestrogen. Br J Haematol 126:244–251

    Article  PubMed  CAS  Google Scholar 

  16. Yan XQ, Lacey D, Fletcher F, Hartley C, McElroy P, Sun Y, Xia M, Mu S, Saris C, Hill D, Hawley RG, McNiece IK (1995) Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood 86:4025–4033

    PubMed  CAS  Google Scholar 

  17. Villeval JL, Cohen-Solal K, Tulliez M, Giraudier S, Guichard J, Burstein SA, Cramer EM, Vainchenker W, Wendling F (1997) High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood 90:4369–4383

    PubMed  CAS  Google Scholar 

  18. Vannuchi A, Bianchi L, Cellai C, Paoletti F, Rana RA, Lorenzini R, Migliaccio G, Migliaccio AR (2002) Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1low mice). Blood 100:1123–1132

    Article  Google Scholar 

  19. Kacena MA, Shivdasani RA, Wilson K, Xi Y, Troiano N, Nazarian A, Gundberg CM, Bouxsein ML, Lorenzo JA, Horowitz MC (2004) Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res 19:652–660

    Article  PubMed  CAS  Google Scholar 

  20. Kacena MA, Gundberg CM, Nelson T, Horowitz MC (2005) Loss of the transcription factor p45 NF-E2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype. Bone 36:215–223

    Article  PubMed  CAS  Google Scholar 

  21. de Sauvage FJ, Hass PE, Spencer SD, Malloy BE, Gurney AL, Spencer SA, Darbonne WC, Henzel WJ, Wong SC, Kuang WJ, Oles KJ, Hultgren B, Solberg LA Jr, Goeddel DV, Eaton DL (1994) Stimulation of megakaryocytopoiesis and thrombopoieis by the c-Mpl ligand. Nature 369:533–538

    Article  PubMed  Google Scholar 

  22. Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, Grant FJ, Heipel MD, Burkhead SK, Kramer JM, Bell LA, Sprecher CA, Blumberg H, Johnson R, Prunkard D, Ching AFT, Mathewes SL, Bailey MC, Forstrom JW, Buddle MM, Osborn SG, Evans SJ, Sheppard PO, Presnell SR, O’Hara PJ, Hagen FS, Roth GJ, Foster DC (1994) Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369:565–568

    Article  PubMed  CAS  Google Scholar 

  23. Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, Forstrom JW, Buddle MM, Oort PJ, Hagen FS, Roth GJ, Papayannopoulou T, Foster DC (1994) Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 369:568–571

    Article  PubMed  CAS  Google Scholar 

  24. Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW (1994) Thrombocytopenia in c-mpl-deficient mice. Science 265:1445–1447

    Article  PubMed  CAS  Google Scholar 

  25. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietin receptor c-Mpl. Blood 87:2162–2170

    PubMed  CAS  Google Scholar 

  26. Samuels A, Perry MJ, Tobias JH (1999) High-dose estrogen induces de novo medullary bone formation in female mice. J Bone Miner Res 14:178–186

    Article  PubMed  CAS  Google Scholar 

  27. Perry MJ, Samuels A, Bird D, Tobias JH (2000) Effects of high-dose estrogen on murine hematopoietic bone marrow precede those on osteogenesis. Am J Physiol Endocrinol Metab 279:E1159–E1165

    PubMed  CAS  Google Scholar 

  28. Ihara K, Ishii E, Eguchi M, Takada H, Suminoe A, Good RA, Hara T (1999) Identifications of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc Natl Acad Sci USA 96:3132–3136

    Article  PubMed  CAS  Google Scholar 

  29. Ballmaier M, Germeshausen M, Schulze H, Cherkaoui K, Lang S, Gaudig A, Krukemeier S, Eilers M, Strauss G, Welte K (2001) c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 97:139–146

    Article  PubMed  CAS  Google Scholar 

  30. King S, Germeshausen M, Strauss G, Welte K, Ballmaier M (2005) Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol 131:636–644

    Article  PubMed  Google Scholar 

  31. Balduini CL, Iolascon A, Savoia A (2002) Inherited thrombocytopenias: from genes to therapy. Haematologica 87:860–880

    PubMed  CAS  Google Scholar 

  32. Geddis AE (2006) Inherited thrombocytopenia: congenital amegakaryocytic thrombocytopenia and thrombocytopenia with absent radii. Semin Hematol 43:196–203

    Article  PubMed  CAS  Google Scholar 

  33. Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchecker W, Wendling F (2002) Prominent role of TGF-β1 in thrombopoietin-induced myelofibrosis in mice. Blood 100:3495–3503

    Article  PubMed  CAS  Google Scholar 

  34. Thiele J, Kvasnicka HM, Vardiman J (2006) Bone marrow histopathology in the diagnosis of chronic myeloproliferative disorders: a forgotten pearl. Best Pract Res Clin Haematol 19:413–437

    Article  PubMed  CAS  Google Scholar 

  35. Chagraoui H, Tulliez M, Smayra T, Komura E, Giraudier S, Yun T, Lassau N, Vainchenker W, Wendling F (2003) Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 101:2983–2989

    Article  PubMed  CAS  Google Scholar 

  36. Kakumitsu H, Kamezaki K, Shimoda K, Karube K, Haro T, Numata A, Shide K, Matsuda T, Oshima K, Harada M (2005) Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res 29:761–769

    Article  PubMed  CAS  Google Scholar 

  37. Wang JC, Hemavathy K, Charles W, Zhang H, Dua PK, Nvetsky AD, Chnag T, Wong C, Jabara M (2004) Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG). Exp Hematol 32:905–910

    Article  PubMed  CAS  Google Scholar 

  38. Bock O, Loch G, Schade U, Büsche G, Wasielewski R, Wiese B, Kriepe H (2005) Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br J Haematol 130:76–82

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt A, Blanchet O, Dib M, Basle MF, Ifrah N, Chappard D (2007) Bone changes in myelofibrosis with myeloid metaplasia: a histomorphometric and microcomputed tomographic study. Eur J Haematol 78:500–509

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We acknowledge the assistance of Dr. Kathleen McDougall in the maintenance, breeding, and genotyping of the mice used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Perry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, M.J., Redding, K.A., Alexander, W.S. et al. Mice Rendered Severely Deficient in Megakaryocytes through Targeted Gene Deletion of the Thrombopoietin Receptor c-Mpl Have a Normal Skeletal Phenotype. Calcif Tissue Int 81, 224–231 (2007). https://doi.org/10.1007/s00223-007-9051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9051-z

Keywords

Navigation