Skip to main content
Log in

Differences in curvature between constrained and unconstrained goal-directed movements to haptic targets

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Trajectories of goal-directed movements are less curved for movements over a surface (constrained) than for movements in empty space (unconstrained). To study whether this difference arises from feeling the surface slip across the skin or having to control the movements in a third dimension, we manipulated the available tactile information and the compliance of the surface. Participants were instructed to make straight movements towards haptic targets in the mid-sagittal plane. We found that constrained movements were less curved than unconstrained movements. The reduction of curvature was also visible with strongly reduced tactile information and for very compliant surfaces, so feeling the surface slip across the skin and having to control the movements in the third dimension are not critical. The reduced curvature when moving over a surface might arise from the extra information that the surface gives about the third dimension or from the extra information about the direction of the movement provided by the additional force needed to overcome friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamovich SV, Berkinblit MB, Fookson O, Poizner H (1998) Pointing in 3D space to remembered targets. I. Kinesthetic versus visual target presentation. J Neurophysiol 79(6):2833–2846

    PubMed  CAS  Google Scholar 

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5(9):2318–2330

    PubMed  CAS  Google Scholar 

  • Bergmann Tiest WM, van der Hoff LMA, Kappers AML Cutaneous and kinaesthetic perception of traversed distance. In: World Haptics Conference (WHC), 2011 IEEE, 2011. IEEE, pp 593–597

  • Blanchard C, Roll R, Roll J, Kavounoudias A (2011) Combined contribution of tactile and proprioceptive feedback to hand movement perception. Brain Res 1382:219–229

    Article  PubMed  CAS  Google Scholar 

  • Bongers RM, Zaal FT (2010) The horizontal curvature of point-to-point movements does not depend on simply the planning space. Neurosci Lett 469(2):189–193

    Article  PubMed  CAS  Google Scholar 

  • Brenner E, Smeets JBJ, Remijnse-Tamerius HC (2002) Curvature in hand movements as a result of visual misjudgements of direction. Spat Vis 15(4):393–414

    Article  PubMed  Google Scholar 

  • Cordo PJ, Horn J, Künster D, Cherry A, Bratt A, Gurfinkel V (2011) Contributions of skin and muscle afferent input to movement sense in the human hand. J Neurophysiol 105(4):1879–1888

    Article  PubMed  PubMed Central  Google Scholar 

  • de Graaf JB, Sittig AC, Denier van der Gon JJ (1991) Misdirections in slow goal-directed arm movements and pointer-setting tasks. Exp Brain Res 84(2):434–438

    Article  PubMed  Google Scholar 

  • Desmurget M, Jordan M, Prablanc C, Jeannerod M (1997) Constrained and unconstrained movements involve different control strategies. J Neurophysiol 77(3):1644–1650

    PubMed  CAS  Google Scholar 

  • Desmurget M, Prablanc C, Jordan M, Jeannerod M (1999) Are reaching movements planned to be straight and invariant in the extrinsic space? Kinematic comparison between compliant and unconstrained motions. Q J Exp Psychol A 52(4):981–1020

    Article  Google Scholar 

  • Flanagan JR, Rao AK (1995) Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J Neurophysiol 74(5):2174–2178

    PubMed  CAS  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements—an experimentally confirmed mathematical-model. J Neurosci 5(7):1688–1703

    PubMed  CAS  Google Scholar 

  • Gardner EP, Sklar BF (1994) Discrimination of the direction of motion on the human hand: a psychophysical study of stimulation parameters. J Neurophysiol 71(6):2414–2429

    PubMed  CAS  Google Scholar 

  • Haggard P, Richardson J (1996) Spatial patterns in the control of human arm movement. J Exp Psychol Human 22(1):42–62

    Article  CAS  Google Scholar 

  • Helms-Tillery SI, Flanders M, Soechting JF (1994) Errors in kinesthetic transformations for hand apposition. NeuroReport 6(1):177–181

    Article  Google Scholar 

  • Henriques DY, Soechting JF (2005) Approaches to the study of haptic sensing. J Neurophysiol 93(6):3036–3043. doi:10.1152/jn.00010.2005

    Article  PubMed  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis-force perturbations of arm trajectory (contact with surface: after few movements back to normal (straight no endpoint error). no contact with surface: only 50% of endpoint error is corrected.). J Neurophysiol 72(1):299–313

    PubMed  CAS  Google Scholar 

  • Lackner JR, Rabin E, DiZio P (2000) Fingertip contact suppresses the destabilizing influence of leg muscle vibration. J Neurophysiol 84(5):2217–2224

    PubMed  CAS  Google Scholar 

  • Meyer DE, Abrams RA, Kornblum S, Wright CE, Keith Smith JE (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95(3):340

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Haggard PN (1995) The curvature of human arm movements in the absence of visual experience. Exp Brain Res 103(3):421–428

    Article  PubMed  CAS  Google Scholar 

  • Moberg E (1983) The role of cutaneous afferents in position sense, kinaesthesia, and motor function of the hand. Brain 106(Pt 1):1–19

    Article  PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42(2):223–227

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa KC, Murray ST, Flanders M (1999) Do arm postures vary with the speed of reaching? J Neurophysiol 81(5):2582–2586

    PubMed  CAS  Google Scholar 

  • Osu R, Uno Y, Koike Y, Kawato M (1997) Possible explanations for trajectory curvature in multijoint arm movements. J Exp Psychol Human 23(3):890–913

    Article  CAS  Google Scholar 

  • Palluel-Germain R, Boy F, Orliaguet JP, Coello Y (2004) Visual and motor constraints on trajectory planning in pointing movements. Neurosci Lett 372(3):235–239

    Article  PubMed  CAS  Google Scholar 

  • Papaxanthis C, Pozzo T, Schieppati M (2003) Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed. Exp Brain Res 148(4):498–503

    PubMed  Google Scholar 

  • Prochazka A, Sontag KH, Wand P (1978) Motor reactions to perturbations of gait: proprioceptive and somesthetic involvement. Neurosci Lett 7:35–39

    Article  PubMed  CAS  Google Scholar 

  • Rao AK, Gordon AM (2001) Contribution of tactile information to accuracy in pointing movements. Exp Brain Res 138(4):438–445. doi:10.1007/s002210100717

    Article  PubMed  CAS  Google Scholar 

  • Robles-De-La-Torre G, Hayward V (2001) Force can overcome object geometry in the perception of shape through active touch. Nature 412(6845):445–448

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn JT Jr (1979) Motor-output variability: a theory for the accuracy of rapid motor acts. Psychol Rev 86(5):415

    Article  Google Scholar 

  • Smeets JBJ, Brenner E (2004) Curved movement paths and the Hering illusion: Positions or directions? Vis Cognit 11(2–3):255–274

    Article  Google Scholar 

  • Soechting J, Lacquaniti F (1981) Invariant characteristics of a pointing movement in man. J Neurosci 1(7):710–720

    PubMed  CAS  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement—minimum torque-change model. Biol Cybern 61(2):89–101

    Article  PubMed  CAS  Google Scholar 

  • van Beers RJ, Sittig AC, van der Gon JJD (1998) The precision of proprioceptive position sense. Exp Brain Res 122(4):367–377

    Article  PubMed  Google Scholar 

  • van der Graaff MCW, Brenner E, Smeets JBJ (2014) Misjudgment of direction contributes to curvature in movements toward haptically defined targets. J Exp Psychol Hum Percept Perform 40(2):802–812. doi:10.1037/a0034843

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1994) Perceptual distortion contributes to the curvature of human reaching movements. Exp Brain Res 98(1):153–156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Netherlands Organization for Scientific Research (NWO), Vici Grant 453-08-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieke C. W. van der Graaff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Graaff, M.C.W., Brenner, E. & Smeets, J.B.J. Differences in curvature between constrained and unconstrained goal-directed movements to haptic targets. Exp Brain Res 232, 3445–3451 (2014). https://doi.org/10.1007/s00221-014-4030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4030-x

Keywords

Navigation