Skip to main content
Log in

Free-field study on auditory localization and discrimination performance in older adults

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Localization accuracy and acuity for low- (0.375–0.75 kHz; LN) and high-frequency (2.25–4.5 kHz; HN) noise bands were examined in young (20–29 years) and older adults (65–83 years) in the acoustic free-field. A pointing task was applied to quantify accuracy, while acuity was inferred from minimum audible angle (MAA) thresholds measured with an adaptive 3-alternative forced-choice procedure. Accuracy decreased with laterality and age. From young to older adults, the accuracy declined by up to 23 % for the low-frequency noise band across all lateralities. The mean age effect was even more pronounced on MAA thresholds. Thus, age was a strong predictor for MAA thresholds for both LN and HN bands. There was no significant correlation between hearing status and localization performance. These results suggest that central auditory processing of space declines with age and is mainly driven by age-related changes in the processing of binaural cues (interaural time difference and interaural intensity difference) and not directly induced by peripheral hearing loss. We conclude that the representation of the location of sound sources becomes blurred with age as a consequence of declined temporal processing, the effect of which becomes particularly evident for MAA thresholds, where two closely adjoining sound sources have to be separated. While localization accuracy and MAA were not correlated in older adults, only a weak correlation was found in young adults. These results point to an employment of different processing strategies for localization accuracy and acuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3AFC:

Three-interval, three-alternative forced-choice

ASW:

Auditory source width

IC:

Interaural coherence

ITD:

Interaural time difference

ILD:

Interaural intensity difference

MAA:

Minimum audible angle

MEG:

Magnetoencephalography

rm-ANOVA:

Repeated measures analysis of variance

RMSE:

Root-mean-square error

SE:

Signed error

References

  • Abel SM, Giguère C, Consoli A, Papsin BC (2000) The effect of aging on horizontal plane sound localization. J Acoust Soc Am 108:743–752

    Article  CAS  PubMed  Google Scholar 

  • Abel SM, Hay VH (1996) Sound localization: the interaction of aging, hearing loss and hearing protection. Scan Audiol 25:3–12

    Article  CAS  Google Scholar 

  • Alain C, McDonald KL, Ostroff JM, Schneider B (2004) Aging: a switch from automatic to controlled processing of sounds? Psychol Aging 19:125–133

    Article  PubMed  Google Scholar 

  • ASHA (2008) Incidence and prevalence of hearing loss and hearing aid use in the united states—2008 edition. Retrieved September 19, 2012, from http://www.asha.org/

  • Babkoff H, Muchnik C, Ben-David N, Furst M, Even-Zohar S, Hildesheimer M (2002) Mapping lateralization of click trains in younger and older populations. Hear Res 165:117–127

    Article  PubMed  Google Scholar 

  • Biedermann F, Bungert P, Dörrscheidt GJ, von Cramon DY, Rübsamen R (2008) Central auditory impairment in unilateral diencephalic and telencephalic lesions. Audiol Neurootol 476:123–144

    Article  Google Scholar 

  • Blauert J, Lindemann W (1986) Spatial mapping of intracranial auditory events for various degrees of interaural coherence. J Acoust Soc Am 79:806–813

    Article  CAS  PubMed  Google Scholar 

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge, MA

    Google Scholar 

  • Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caspary DM, Schatteman TA, Hughes LF (2005) Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 25:10952–10959

    Article  CAS  PubMed  Google Scholar 

  • Chadderton P, Agapiou JP, McAlpine D, Margrie TW (2009) The synaptic representation of sound source location in auditory cortex. J Neurosci 29:14127–14135

    Article  CAS  PubMed  Google Scholar 

  • Chandler DW, Grantham DW (1991) Effects of age on auditory spatial resolution in the horizontal plane. J Acoust Soc Am 89:1994

    Article  Google Scholar 

  • Committee on Hearing and Bioacoustics and Biomechanics (CHABA) (1988) Speech understanding and aging. J Acoust Soc Am 83:856–895

    Google Scholar 

  • Corso JF (1971) Sensory processes and age effects in normal adults. J Gerontol 26:90–105

    Article  CAS  PubMed  Google Scholar 

  • Cranford JL, Andres MA, Piatz KK, Reissig KL (1993) Influences of age and hearing loss on the precedence effect in sound localization. JSHR 36:437–441

    CAS  PubMed  Google Scholar 

  • Cruickshanks KJ, Wiley TL, Tweed TS, Klein BEK, Klein R, Mares-Perlman JA, Nondahl DM (1998) Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. The epidemiology of hearing loss study. Am J Epidemiol 148:879–886

    Article  CAS  PubMed  Google Scholar 

  • Dobreva MS, O’Neill WE, Paige GD (2011) Influence of aging on human sound localization. J Neurophysiol 105:2471–2486

    Article  PubMed Central  PubMed  Google Scholar 

  • Eckert MA (2011) Slowing down: age-related neurobiological predictors of processing speed. Front Neurosci 5:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Eddins DA, Hall JW III (2010) Binaural processing and auditory asymmetries. In: Gordon-Salant S, Frisina RD, Popper AN (eds) The aging auditory system. Springer, New York, pp 135–143

    Chapter  Google Scholar 

  • Faller C, Merimaa J (2004) Source localization in complex listening situations: selection of binaural cues based on interaural coherence. J Acoust Soc Am 116:3075–3089

    Article  PubMed  Google Scholar 

  • Fitzgibbons PJ, Gordon-Salant S (1996) Auditory temporal processing in elderly listeners. J Am Acad Audiol 7:183–189

    CAS  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  • Freigang C, Schmidt L, Wagner J, Eckhardt R, Steinhagen-Thiessen E, Ernst A, Rübsamen R (2011) Evaluation of central auditory discrimination abilities in older adults. Front Aging Neurosci 3:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Frisina DR, Frisina RD (1997) Speech recognition in noise and presbycusis: relations to possible neural mechanisms. Hear Res 106:95–104

    Article  CAS  PubMed  Google Scholar 

  • Frisina RD, Walton JP (2006) Age-related structural changes in the cochlear nucleus. Hear Res 216–217:216–223

    Article  PubMed  Google Scholar 

  • Gates GA, Cooper JC, Kannel WB, Miller NJ (1990) Hearing in the elderly: the Framingham Cohort, 1983–1985. Part I. Basic audiometric test results. Ear Hear 11:247–256

    Article  CAS  PubMed  Google Scholar 

  • Grantham DW (1995) Spatial hearing and related phenomena. In: Moore BCJ (ed) Hearing, 2nd edn. Academic Press, New York, pp 297–345

    Chapter  Google Scholar 

  • Green MD, Swets JA (1989) Signal detection theory and psychophysics. Peninsula Publishing, Los Altos, CA

    Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    Article  CAS  PubMed  Google Scholar 

  • Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686

    Article  CAS  PubMed  Google Scholar 

  • Hartmann WM (1983) Localization of sound in rooms. J Acoust Soc Am 74:1380–1391

    Article  CAS  PubMed  Google Scholar 

  • Hartmann WM, Rakerd B (1989) On the minimum audible angle-a decision theory approach. J Acoust Soc Am 85:2031–2041

    Article  CAS  PubMed  Google Scholar 

  • Häusler R, Colburn S, Marr E (1983) Sound localization in subjects with impaired hearing. Spatial discrimination and interaural-discrimination tests. Acta Otolaryngol 400:1–62

    Article  Google Scholar 

  • He N-J, Dubno JR, Mills JH (1998) Frequency and intensity discrimination measured in a maximum-likelihood procedure from young and aged normal-hearing subjects. J Acoust Soc Am 103:553–565

    Article  CAS  PubMed  Google Scholar 

  • Heffner RS, Heffner HE (1988) Sound localization acuity in the cat: effect of azimuth, signal duration, and test procedure. Hear Res 36:221–232

    Article  CAS  PubMed  Google Scholar 

  • Herman GE, Warren LR, Wagener JW (1977) Auditory lateralization: age differences in sensitivity to dichotic time and amplitude cues. J Gerontol 32:187–191

    Article  Google Scholar 

  • Humes LE (1996) Speech understanding in the elderly. J Am Acad Audiol 7:161–167

    CAS  PubMed  Google Scholar 

  • Kirikae I (1969) Auditory function in advanced age with reference to histological changes in the central auditory system. Int Audiol 8:221–230

    Article  Google Scholar 

  • Lewald J, Dörrscheidt GJ, Ehrenstein WH (2000) Sound localization with eccentric head position. Behav Brain Res 108:105–125

    Article  CAS  PubMed  Google Scholar 

  • Lister JJ, Roberts RA (2005) Effects of age and hearing loss on gap detection and the precedence effect: narrow-band stimuli. JSLHR 48:482–493

    PubMed  Google Scholar 

  • Litovsky RY, Macmillan NA (1994) Sound localization precision under conditions of the precedence effect: Effects of azimuth and standard stimuli. J Acoust Soc Am 96:752–758

    Article  CAS  PubMed  Google Scholar 

  • Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 111:2219–2236

    Article  PubMed  Google Scholar 

  • Magezi DA, Krumbholz K (2010) Evidence for opponent. Channel coding of interaural time differences in human auditory cortex. J Neurophysiol 104:1997–2007

    Article  PubMed Central  PubMed  Google Scholar 

  • Makous JA, Middlebrooks JC (1990) Two-dimensional sound localization by human listeners. J Acoust Soc Am 87:2188–2200

    Article  CAS  PubMed  Google Scholar 

  • McFadden D, Pasanen EG (1976) Lateralization at high frequencies based on interaural time differences. J Acoust Soc Am 59:634–639

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–159

    Article  CAS  PubMed  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246

    Article  Google Scholar 

  • Moore JM, Tollin DJ, Yin TCT (2008) Can measures of sound localization acuity be related to the precision of absolute location estimates? Hear Res 238:94–109

    Article  PubMed Central  PubMed  Google Scholar 

  • Nash SD, Cruickshanks KJ, Klein R, Klein BEK, Nieto F, Huang GH, Pankow JS, Tweed TS (2011) The prevalence of hearing impairment and associated risk factors the beaver dam offspring study. Arch Orolaryngol Head Neck Surg 137:432–439

    Article  Google Scholar 

  • Neher T, Laugesen S, Jensen NS, Kragelund L (2011) Can basic auditory and cognitive measures predict hearing-impaired listeners’ localization and spatial speech recognition abilities? J Acoust Soc Am 130:1542–1558

    Article  PubMed  Google Scholar 

  • Noble W, Byrne D, Lepage B (1994) Effects on sound localization of configuration and type of hearing impairment. J Acoust Soc Am 95:992–1005

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologica 9:97–113

    Article  CAS  Google Scholar 

  • Perrott DR (1984) Concurrent minimum audible angle: a re-examination of the concept of auditory spatial acuity. J Acoust Soc Am 75:1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Perrott DR, Marlborough K, Merrill P (1989) Minimum audible angle thresholds obtained under conditions in which the precedence effect is assumed to operate. J Acoust Soc Am 85:282–288

    Article  CAS  PubMed  Google Scholar 

  • Pichora-Fuller MK, Schneider BA (1991) Masking-level differences in the elderly: a comparison of antiphasic and time-delay dichotic conditions. JSLHR 34:1410–1422

    CAS  Google Scholar 

  • Rakerd B, Vander Velde TJ, Hartmann WM (1998) Sound localization in the median sagittal plane by listeners with presbyacusis. J Am Acad Audiol 9:466–479

    CAS  PubMed  Google Scholar 

  • Rakerd B, Hartmann WM (2010) Localization of sound in rooms. V. Binaural coherence and human sensitivity to interaural time differences in noise. J Acoust Soc Am 128:3052–3063

    Article  PubMed Central  PubMed  Google Scholar 

  • Recanzone GH, Engle JR, Juarez-Salinas DL (2011) Spatial and temporal processing of single auditory cortical neurons and populations of neurons in the macaque monkey. Hear Res 271:115–122

    Google Scholar 

  • Recanzone GH, Makhamra SDDR, Guard DC (1998) Comparisons of relative and absolute sound localization ability in humans. J Acoust Soc Am 103:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Ross B, Fujioka T, Tremblay K, Picton TW (2007) Aging in binaural hearing begins in mid-life: evidence from cortical auditory-evoked responses to changes in interaural phase. J Neurosci 27:11172–11178

    Article  CAS  PubMed  Google Scholar 

  • Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2011) Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proc Nat Acad Sci 108:15516–15521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2012) Why middle-aged listeners have trouble hearing in everyday settings. Curr Biol 22:1417–1422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salminen NH, May PJC, Alku P, Tiitinen H (2009) A population rate code of auditory space in the human cortex. PLoS ONE 4:e7600

    Article  PubMed Central  PubMed  Google Scholar 

  • Salminen NH, Tiitinen H, May PJC (2012) Auditory spatial processing in the human cortex. Neuroscientist 18:602–612

    Article  PubMed  Google Scholar 

  • Schmidt PH, van Gemert AHM, de Fires RJ, Duyff JW (1953) Binaural threshold for azimuth difference. Acta Physiol Pharmacol Neerl 3:2–18

    CAS  PubMed  Google Scholar 

  • Schmiedchen K, Freigang C, Nitsche I, Rübsamen R (2012) Crossmodal interactions and multisensory integration in the perception of audio-visual motion—a free-field study. Brain Res 1466:99–111

    Article  CAS  PubMed  Google Scholar 

  • Schmiedt RA (2010) The physiology of cochlear presbycusis. In: Gordon-Salant S, Frisina RD, Popper AN (eds) The aging auditory system. Springer, New York, pp 9–38

    Chapter  Google Scholar 

  • Schneider BA, Hamstra SJ (1999) Gap detection thresholds as a function of tonal duration for younger and older listeners. J Acoust Soc Am 106:371–380

    Article  CAS  PubMed  Google Scholar 

  • Schuknecht HF (1955) Presbycusis. The Laryngoscope 65:402–419

    Article  CAS  PubMed  Google Scholar 

  • Shinn-Cunningham BG, Ruggles D, Bharadwaj H (2013) How early aging and environment interact in everyday listening: from brainstem to behavior through modeling. In: Moore BCJ (ed) Basic aspects of hearing. Springer, New York, pp 501–510

    Chapter  Google Scholar 

  • Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:e78

    Article  PubMed Central  PubMed  Google Scholar 

  • Strouse A, Ashmead DH, Ohde RN, Grantham DW (1998) Temporal processing in the aging auditory system. J Acoust Soc Am 104:2385–2399

    Article  CAS  PubMed  Google Scholar 

  • Strut JWrB (1907) On our perception of sound direction. Philos Mag 13:214–232

    Article  Google Scholar 

  • Tollin DJ (2003) The lateral superior olive: a functional role in sound source localization. Neuroscientist 9:127–143

    Article  PubMed  Google Scholar 

  • Tremblay K, Picton TW, Ross B (2007) Auditory evoked MEG responses to interaural phase changes: effects of aging on response latencies. Int Congr Ser 1900:69–72

    Article  Google Scholar 

  • Wang M, Wu X, Li L, Schneider B (2011) The effects of age and interaural delay on detecting a change in interaural correlation: the role of temporal jitter. Hear Res 275:139–149

    Article  PubMed  Google Scholar 

  • Whitmer WM, Seeber BU, Akeroyd MA (2012) Apparent auditory source width insensitivity in older hearing-impaired individuals. J Acoust Soc Am 132:369–379

    Article  PubMed Central  PubMed  Google Scholar 

  • Wiggins IM, Seeber BU (2012) Effects of dynamic-range compression on the spatial attributes of sounds in normal-hearing listeners. Ear Hear 33:399–410

    Article  PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1992) The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 91:1648–1661

    Article  CAS  PubMed  Google Scholar 

  • Zahnert T (2011) The differential diagnosis of hearing loss. Dtsch Arztebl Int 108:433–444

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ingo Kannetzky, Matthias Freier, Jörg Eckebrecht, Nicole Richter, and Joachim Dörrscheidt for their help in planning and setting up the free-field setup and implementing the experimental software. We also thank Marissa Malkowski and Geoffrey Davey for proof-reading earlier versions of the manuscript. Further, the authors would like to thank the two anonymous reviewers for their helpful comments. We gratefully acknowledge the funding of this work by the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom) and the Erasmus Mundus Student Exchange Network in Auditory Cognitive Neuroscience (ACN).

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Freigang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freigang, C., Schmiedchen, K., Nitsche, I. et al. Free-field study on auditory localization and discrimination performance in older adults. Exp Brain Res 232, 1157–1172 (2014). https://doi.org/10.1007/s00221-014-3825-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3825-0

Keywords

Navigation