Skip to main content
Log in

Influence of (S)-ketamine on human motor cortex excitability

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous studies demonstrated a reduction of motor cortical excitability through pharmacological NMDA receptor blockage. Interestingly, subanesthetic doses of racemic ketamine, a non-competitive NMDA receptor antagonist, had no effects on intracortical excitability evoked by transcranial magnetic stimulation. In this study, we aimed to substantiate these findings by using the more active enantiomer (S)-ketamine. (S)-ketamine has a threefold higher affinity for the NMDA receptor, but relatively little is known about its specific effects on human motor cortex excitability. Eleven healthy subjects (two female) participated in a randomized, double-blind, placebo-controlled cross-over study with four treatment conditions: either placebo or one of three subanesthetic doses of intravenous (S)-ketamine (serum target 10, 30 and 50 ng/ml, respectively). We assessed intracortical inhibition and facilitation using a paired-pulse TMS-paradigm. Resting motor threshold and cortical silent period were assessed as additional parameters. Solely at highest (S)-ketamine concentrations, intracortical inhibition was significantly reduced and intracortical facilitation strongly tended to be enhanced. In addition, we found a tendency to a prolonged silent period, while resting motor threshold was unaffected. We conclude that subanesthetic doses of (S)-ketamine show an enhancement on excitability in human motor cortex. Similar to findings using the racemic mixture of ketamine, the effect may be due to an increase in non-NMDA glutamatergic transmission which outweighs the NMDA receptor blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams HA, Werner C (1997) From the racemate to the eutomer: (S)-ketamine. Renaissance of a substance? Anaesthesist 46:1026–1042

    Article  PubMed  CAS  Google Scholar 

  • Badawy RA, Tarletti R, Mula M, Varrasi C, Cantello R (2011) The routine circular coil is reliable in paired-TMS studies. Clin Neurophysiol 122:784–788

    Article  PubMed  Google Scholar 

  • Bouillon T, Bruhn J, Radu-Radulescu L, Andresen C, Cohane C, Shafer SL (2003) A model of the ventilatory depressant potency of remifentanil in the non-steady state. Anesthesiology 99:779–787

    Article  PubMed  CAS  Google Scholar 

  • Bruhn J, Bouillon TW, Shafer SL (2000) Bispectral index (BIS) and burst suppression: revealing a part of the BIS algorithm. J Clin Monit Comput 16:593–596

    Article  PubMed  CAS  Google Scholar 

  • Bustos G, Abarca J, Forray MI, Gysling K, Bradberry CW, Roth RH (1992) Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies. Brain Res 585:105–115

    Article  PubMed  CAS  Google Scholar 

  • Chizh BA (2007) Low dose ketamine: a therapeutic and research tool to explore N-methyl-D-aspartate (NMDA) receptor-mediated plasticity in pain pathways. J Psychopharmacol 21:259–271

    Article  PubMed  CAS  Google Scholar 

  • Deakin JF, Lees J, McKie S, Hallak JE, Williams SR, Dursun SM (2008) Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry 65:154–164

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Pilato F, Zito G, Dileone M, Nicoletti R, Pasqualetti P, Tonali PA (2003) Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. J Physiol 547:485–496

    Article  PubMed  Google Scholar 

  • Fleming MK, Sorinola IO, Newham DJ, Roberts-Lewis SF, Bergmann JH (2012) The effect of coil type and navigation on the reliability of transcranial magnetic stimulation. IEEE Trans Neural Syst Rehabil Eng 20:617–625

    Article  PubMed  Google Scholar 

  • Gilbert DL, Ridel KR, Sallee FR, Zhang J, Lipps TD, Wassermann EM (2006) Comparison of the inhibitory and excitatory effects of ADHD medications methylphenidate and atomoxetine on motor cortex. Neuropsychopharmacology 31:442–449

    Article  PubMed  CAS  Google Scholar 

  • Hallett M, Chen R, Ziemann U, Cohen LG (1999) Reorganization in motor cortex in amputees and in normal volunteers after ischemic limb deafferentation. Electroencephalogr Clin Neurophysiol Suppl 51:183–187

    PubMed  CAS  Google Scholar 

  • Harrison NL, Simmonds MA (1985) Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84:381–391

    Article  PubMed  CAS  Google Scholar 

  • Ihmsen H, Geisslinger G, Schuttler J (2001) Stereoselective pharmacokinetics of ketamine: R(−)−ketamine inhibits the elimination of S(+)-ketamine. Clin Pharmacol Ther 70:431–438

    Article  PubMed  CAS  Google Scholar 

  • Ikoma K, Samii A, Mercuri B, Wassermann EM, Hallett M (1996) Abnormal cortical motor excitability in dystonia. Neurology 46:1371–1376

    Article  PubMed  CAS  Google Scholar 

  • Irifune M, Shimizu T, Nomoto M, Fukuda T (1992) Ketamine-induced anesthesia involves the N-methyl-D-aspartate receptor-channel complex in mice. Brain Res 596:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156

    Article  PubMed  Google Scholar 

  • Kohrs R, Durieux ME (1998) Ketamine: teaching an old drug new tricks. Anesth Analg 87:1186–1193

    PubMed  CAS  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  CAS  Google Scholar 

  • Liu J, Moghaddam B (1995) Regulation of glutamate efflux by excitatory amino acid receptors: evidence for tonic inhibitory and phasic excitatory regulation. J Pharmacol Exp Ther 274:1209–1215

    PubMed  CAS  Google Scholar 

  • Lotsch J, Skarke C, Schmidt H, Rohrbacher M, Hofmann U, Schwab M, Geisslinger G (2006) Evidence for morphine-independent central nervous opioid effects after administration of codeine: contribution of other codeine metabolites. Clin Pharmacol Ther 79:35–48

    Article  PubMed  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    PubMed  CAS  Google Scholar 

  • Oertel BG, Felden L, Tran PV, Bradshaw MH, Angst MS, Schmidt H, Johnson S, Greer JJ, Geisslinger G, Varney MA, Lotsch J (2010) Selective antagonism of opioid-induced ventilatory depression by an ampakine molecule in humans without loss of opioid analgesia. Clin Pharmacol Ther 87:204–211

    Article  PubMed  CAS  Google Scholar 

  • Overall JE, Gorham DR (1962) Brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  • Roick H, von Giesen HJ, Benecke R (1993) On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp Brain Res 94:489–498

    Article  PubMed  CAS  Google Scholar 

  • Schuhfried G (2009) Daueraufmerksamkeit (DAUF) aus dem Wiener Testsystem (WTS). In: Schellig D, Drechsler R, Heinemann D, Sturm W (eds) Handbuch neuropsychologischer Testverfahren. Hogrefe, Aufmerksamkeit, Gedächtnis und exekutive Funktionen, pp 67–72

    Google Scholar 

  • Schwenkreis P, Witscher K, Janssen F, Addo A, Dertwinkel R, Zenz M, Malin JP, Tegenthoff M (1999) Influence of the N-methyl-D-aspartate antagonist memantine on human motor cortex excitability. Neurosci Lett 270:137–140

    Article  PubMed  CAS  Google Scholar 

  • Shafer SL, Siegel LC, Cooke JE, Scott JC (1988) Testing computer-controlled infusion pumps by simulation. Anesthesiology 68:261–266

    Article  PubMed  CAS  Google Scholar 

  • Shafer SL, Varvel JR, Aziz N, Scott JC (1990) Pharmacokinetics of fentanyl administered by computer-controlled infusion pump. Anesthesiology 73:1091–1102

    Article  PubMed  CAS  Google Scholar 

  • Storustovu S, Sanchez C, Porzgen P, Brennum LT, Larsen AK, Pulis M, Ebert B (2004) R-citalopram functionally antagonises escitalopram in vivo and in vitro: evidence for kinetic interaction at the serotonin transporter. Br J Pharmacol 142:172–180

    Article  PubMed  CAS  Google Scholar 

  • van Berckel BN, Oranje B, van Ree JM, Verbaten MN, Kahn RS (1998) The effects of low dose ketamine on sensory gating, neuroendocrine secretion and behavior in healthy human subjects. Psychopharmacology 137:271–281

    Article  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996a) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996b) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding MC (1996c) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496(Pt 3):873–881

    PubMed  CAS  Google Scholar 

  • Ziemann U, Chen R, Cohen LG, Hallett M (1998) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Steven L. Shafer for providing STANPUMP. The first author acknowledges support from a DFG Grant. This study was supported by a grant from the Faculty of Medicine of the Ruhr-University Bochum (FoRUM AZ F417/2004). Sources of support: Equipment: STANPUMP is freely available from the author, Steven L. Shafer, M.D., Anesthesiology Service (112A), PAVAMC, 3801 Miranda Ave., Palo Alto, CA. 94304 at http://www.opentci.org/lib/exe/fetch.php?media=code:stanpump.zip, accessed on July 3, 2012.

Conflict of interest

The authors O.H., I.H., J.L., A.W., and M.T. declare that there is no conflict of interest. C.M. received fees for consulting from Astellas Sanofi Aventis, Wyeth, Pfizer, Mundipharma, Eli Lilly. He received research funding from Pfizer, MSD, Mundipharma, Grünenthal, Astellas, Lilly. He is a member of the IMI “Europain” collaboration and industry members of this are as follows: AstraZeneca, Pfizer, Esteve, UCBPharma, Sanofi Aventis, Grünenthal, Eli Lilly, and Boehringer Ingelheim. P.S. received research funding from Bayer Health Care AG, Biogen Idec, Merck KGaA, and Teva Pharma GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Höffken.

Additional information

Oliver Höffken and Ida S. Haussleiter are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höffken, O., Haussleiter, I.S., Westermann, A. et al. Influence of (S)-ketamine on human motor cortex excitability. Exp Brain Res 225, 47–53 (2013). https://doi.org/10.1007/s00221-012-3347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3347-6

Keywords

Navigation