Skip to main content

Advertisement

Log in

Determination of molecular size parameters and quantification of polyacrylic acid by high performance size-exclusion chromatography with triple detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Synthetic polyelectrolytes are a broad class of vaccine adjuvants. Among them, polyacrylic acid (PAA), a polyanionic polymer, is currently evaluated by Sanofi Pasteur. As chain length is considered to be a critical quality attribute for adjuvant properties of PAA, measurement of precise and accurate molecular size parameters is important for these polymers. In the field of synthetic polymer chemistry, methods for determination of molecular size parameters are well defined. Specifically, high performance size-exclusion chromatography (HPSEC) with multi-detection system is a method of choice. This paper describes the development of HPSEC method to well characterize and precisely quantify PAA in different adjuvant formulations. A first set of characterizations were made, with determination of dn/dc coefficient, which enabled the determination of weight- and number-average molecular weight, viscosimetric radius, and intrinsic viscosity. In-depth characterization was also made with branching study through the use of Mark-Houwink parameter determination. The quantification method was also evaluated according to validation method-like criteria: limit of detection and limit of quantification, repeatability, accuracy, and specificity with recombinant surface glycoprotein gB from human cytomegalovirus (CMV-gB) as model antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McElrath MJ. Selection of potent immunological adjuvants for vaccine construction. Semin Cancer Biol. 1995;6:375–85.

    Article  CAS  Google Scholar 

  2. Guy B. The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol. 2007;5:505–17.

    Article  CAS  Google Scholar 

  3. Diamantstein T, Wagner B, Beyse I, Odenwald MV, Schultz G. Stimulation of humoral antibody formation by polyanions I. The effect of polyacrylic acid on the primary immune response in mice immunized with sheep red blood cells. Eur J Immunol. 1971;1:335–9.

    Article  CAS  Google Scholar 

  4. McCarthy RE, Arnold LW, Babcock GF. Dextran sulphate: an adjuvant for cell-mediated immune responses. Immunology. 1977;32:963–74.

    CAS  Google Scholar 

  5. Hilgers LA, Nicolas I, Lejeune G, Dewil E, Strebelle M, Boon B. Alkyl-esters of polyacrylic acid as vaccine adjuvants. Vaccine. 1998;16:1575–81.

    Article  CAS  Google Scholar 

  6. Eng NF, Garlapati S, Gerdts V, Potter A, Babiuk LA, Mutwiri GK. The potential of polyphosphazenes for delivery of vaccine antigens and immunotherapeutic agents. Curr Drug Deliv. 2010;7:13–20.

    Article  CAS  Google Scholar 

  7. Kriwet B, Walter E, Kissel T. Synthesis of bioadhesive poly(acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates. J Control Release. 1998;56:149–58.

    Article  CAS  Google Scholar 

  8. Oechsner M, Keipert S. Polyacrylic acid/polyvinylpyrrolidone bipolymeric systems. I. Rheological and mucoadhesive properties of formulations potentially useful for the treatment of dry-eye-syndrome. Eur J Pharm Biopharm. 1999;47:113–8.

    Article  CAS  Google Scholar 

  9. Tarvainen T, Nevalainen T, Sundell A, Svarfvar B, Hyrsyla J, Paronen P. Drug release from poly(acrylic acid) grafted poly(vinylidene fluoride) membrane bags in the gastrointestinal tract in the rat and dog. J Control Release. 2000;66:19–26.

    Article  CAS  Google Scholar 

  10. Mustafaev M. Functionally biopolymer systems. Sigma. 2004;4:1–200.

    Google Scholar 

  11. Topuzogullari M, Cimen NS, Mustafaeva Z, Mustafae M. Molecular-weight distribution and structural transformation in water-soluble complexes of poly(acrylic acid) and bovine serum albumin. Eur Polym J. 2007;43:2935–46.

    Article  CAS  Google Scholar 

  12. Hilgers LA, Nicolas I, Lejeune G, Dewil E, Boon B. Effects of various adjuvants on secondary immune response in chickens. Vet Immunol Immunophatol. 1998;66:159–71.

    Article  CAS  Google Scholar 

  13. Minke JM, Fischer L, Baudu P, Guigal PM, Sindle T, Mumford JA, et al. Use of DNA and recombinant canarypox viral (ALVAC) vectors for equine herpes virus vaccination. Vet Immunol Immunopathol. 2006;111:47–57.

    Article  CAS  Google Scholar 

  14. Gelfi J, Pappalardo M, Claverys C, Peralta B, Guerin JL. Safety and efficacy of an inactivated Carbopol-adjuvanted goose haemorrhagic polyomavirus vaccine for domestic geese. Avian Pathol. 2010;39:111–6.

    Article  CAS  Google Scholar 

  15. Riley RG, Smart JD, Tsibouklis J, Dettmar PW, Hampson F, Davis JA, et al. An investigation of mucus/polymer rheological synergism using synthesized and characterized poly(acrylic acid). Int J Pharm. 2001;217:87–100.

    Article  CAS  Google Scholar 

  16. Zaman M, Simerska P, Toth I. Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response. Curr Drug Deliv. 2010;7:118–24.

    Article  CAS  Google Scholar 

  17. Cranage MP, Fraser CA, Cope A, McKay PF, Seaman MS, Cole T, et al. Antibody responses after intravaginal immunisation with trimeric HIV-1 CN54 clade C gp140 in Carbopol gel are augmented by systemic priming or boosting with an adjuvanted formulation. Vaccine. 2011;29:1421–30.

    Article  CAS  Google Scholar 

  18. Kabanov VA. From synthetic polyelectrolytes to polymer subunit vaccines. Pure Appl Chem. 2004;76:1659–77.

    Article  CAS  Google Scholar 

  19. Maniego AR, Ang D, Guillaneuf Y, Lefay C, Gigmes D, Aldrich-Wright JR, et al. Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions. Anal Bioanal Chem. 2013;405:9009–20.

    Article  CAS  Google Scholar 

  20. Sutton AT, Read E, Maniego AR, Thevarajah JJ, Marty JD, Destarac M, et al. Purity of double hydrophilic block copolymers revealed by capillary electrophoresis in the critical conditions. J Chromatogr A. 2014;1372:187–95.

    Article  CAS  Google Scholar 

  21. Runyon JR, Williams SKR. A theory-based approach to thermal field-flow fractionation of polyacrylates. J Chromatogr A. 2012;1218:7016–22.

    Google Scholar 

  22. Wagner M, Pietsch C, Tauhardt L, Schallon A, Schubert US. Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering—a comparison with traditional techniques. J Chromatogr A. 2014;1325:195–203.

    Article  CAS  Google Scholar 

  23. Ladaviere C, Lacroix-Desmazes P, Delolme F. First systematic MALDI/ESI mass spectrometry comparison to characterize polystyrene synthesized by different controlled radical polymerizations. Macromolecules. 2009;42:70–84.

    Article  CAS  Google Scholar 

  24. Ben Abderrazak H, Fildier A, Marque S, Prim D, Ben Romdhane H, Kricheldorf HR, et al. Cyclic and non cyclic aliphatic-aromatic polyesters derived from biomass: study of structures by MALDI-ToF and NMR. Eur Polym J. 2011;47:2097–110.

    Article  CAS  Google Scholar 

  25. Trathnigg B. Size-exclusion chromatography of polymers. In: Meyers RA (ed.) Encyclopedia of analytical chemistry: applications, theory and instrumentation. Chichester; 2000. pp.8008-8034.

  26. Striegel A, Yau WW, Kirkland JJ, Bly DD. Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography. 2nd ed. Hoboken: Wiley; 2009.

    Book  Google Scholar 

  27. Marquette S, Peerboom C, Yates A, Denis L, Langer I, Amighi K, et al. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres. Int J Pharm. 2014;470:41–50.

    Article  CAS  Google Scholar 

  28. Andrianov AK, Marin A, Roberts BE. Polyphosphazene polyelectrolytes: a link between the formation of noncovalent complexes with antigenic proteins and immunostimulating activity. Biomacromolecules. 2005;6:1375–9.

    Article  CAS  Google Scholar 

  29. Meehan E. Characterization of hydroxypropylmethylcellulose phthalate (HPMCP) by GPC using a modified organic solvent. Anal Chim Acta. 2006;557:2–6.

    Article  CAS  Google Scholar 

  30. Jackson JK, Hung T, Letchford K, Burt HM. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Int J Pharm. 2007;342:6–17.

    Article  CAS  Google Scholar 

  31. Gaborieau M, Nicolas J, Save M, Charleux B, Vairon J-P, Gilbert RG, et al. Separation of complex branched polymers by size-exclusion chromatography probed with multiple detection. J Chromatogr A. 2008;1190:215–23.

    Article  CAS  Google Scholar 

  32. Billard A, Pourchet L, Malaise S, Alcouffe P, Montembault, Ladaviere C. Liposome-loaded chitosan physical hydrogel: toward a promising delayed-release biosystem. Carbohyd Polym. 2015;115:651–7.

    Article  CAS  Google Scholar 

  33. Loiseau J, Doërr N, Suau JM, Egraz JB, Llauro MF, Ladaviere C, et al. Synthesis and characterization of poly(acrylic acid) produced by RAFT polymerization. Application as a very efficient dispersant of CaCO3, Kaolin, and TiO2. Macromolecules. 2003;36:3066–77.

    Article  CAS  Google Scholar 

  34. Bromberg L, Temchenko M, Alakhov V, Hatton TA. Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels. Int J Pharm. 2004;282:45–60.

    Article  CAS  Google Scholar 

  35. Dowling AH, Fleming GJP. The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative. Dent Mater. 2011;27:535–43.

    Article  CAS  Google Scholar 

  36. Mansuroglu B, Mustafaeva Z. Characterization of water-soluble conjugates of polyacrylic acid and antigenic peptide of FMDV by size exclusion chromatography with quadruple detection. Mater Sci Eng C. 2012;32:112–8.

    Article  CAS  Google Scholar 

  37. Loiseau J, Ladaviere C, Suau JM, Claverie J. Dispersion of calcite by poly(sodium acrylate) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer. 2005;46:8565–72.

    Article  CAS  Google Scholar 

  38. Zeng Z, Sun L, Xue W, Yin N, Zhu W. Relationships of intrinsic viscosity to molecular weight for poly(1-4 butylene adipate). Polym Test. 2010;29:66–71.

    Article  CAS  Google Scholar 

  39. Rolon-Garrido VH, Kruse M, Wagner MH. Size exclusion chromatography of photo-oxydated LDPE by triple detection and its relation to rheological behavior. Polym Degrad Stab. 2015;111:46–54.

    Article  CAS  Google Scholar 

  40. Hartmann WK, Saptharishi N, Yang XY, Mitra G, Soman G. Characterization and analysis of thermal denaturation of antibodies by size exclusion high-performance liquid chromatography with quadruple detection. Anal Biochem. 2004;325:227–39.

    Article  CAS  Google Scholar 

  41. Liu Y, Bo S. Hydrodynamic radius characterization of a vinyl-type polynorbornene by size-exclusion chromatography with a static and dynamic laser light scattering detector. Chromatographia. 2004;59:299–303.

    CAS  Google Scholar 

  42. La Gatta A, De Rosa M, Marzaioli I, Busico T, Schiraldi C. A complete hyaluronan hydrodynamic characterization using a size exclusion chromatography-triple detector array system during in vitro enzymatic degradation. Anal Biochem. 2010;404:21–9.

    Article  Google Scholar 

  43. Mendrek B, Trzebicka B, Walach W, Dworak A. Solution behavior of 4-arm poly(tert-butyl acrylate) star polymers. Eur Polym J. 2010;46:2341–51.

    Article  CAS  Google Scholar 

  44. Yu Y, DesLauriers PJ, Rohlfing DC. SEC-MALS method for the determination of long-chain branching distribution in polyethylene. Polymer. 2005;46:5165–82.

    Article  CAS  Google Scholar 

  45. Gaborieau M, Castignolles P. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides. Anal Bioanal Chem. 2011;399:1413–23.

    Article  CAS  Google Scholar 

  46. Li S, Huang Y, Wang S, Xu X, Zhang L. Determination of the triple helical chain conformation of β-glucan by facile and reliable triple-detector size exclusion chromatography. J Phys Chem B. 2014;118:668–75.

    Article  CAS  Google Scholar 

  47. Yan JK, Pei JJ, Ma HL, Wang ZB. Effects of ultrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan. Carbohdyr Polym. 2015;121:64–70.

    Article  CAS  Google Scholar 

  48. Kendrick BS, Kerwin BA, Chang BS, Philo JS. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein–protein or protein–ligand association states. Anal Biochem. 2001;299:136–46.

    Article  CAS  Google Scholar 

  49. Tommeraas K, Strand SP, Christensen BE, Smidsrod O, Varum KM. Preparation and characterization of branched chitosans. Carbohydr Polym. 2011;83:1558–64.

    Article  CAS  Google Scholar 

  50. Kes M, Christensen BE. A re-investigation of the Mark-Houwink-Sakura parameters for cellulose in Cuen: a study based on size-exclusion chromatography combined with multi-angle light scattering and viscosimetry. J Chromatogr A. 2013;1281:32–7.

    Article  CAS  Google Scholar 

  51. Lim DG, Kim NA, Lim JY, Hada S, Jeong SH. Evaluation of etanercept stability as exposed to various sugars with biophysical assessment. Int J Pharm. 2014;426:50–9.

    Article  Google Scholar 

  52. Gomez-Ordonez E, Jimenez-Escrig A, Ruperez P. Molecular weight distribution of polysaccharides from edible seaweeds by high-performance size-exclusion chromatography (HPSEC). Talanta. 2012;93:153–9.

    Article  CAS  Google Scholar 

  53. Zimm BH. Apparatus and method for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions. J Chem Phys. 1948;16:1099–116.

    Article  CAS  Google Scholar 

  54. Kato T, Okamoto T, Tokuya T, Takahashi A. Solution properties and chain flexibility of pullulan in aqueous solution. Biopolymers. 1982;21:1623–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Cotte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotte, JF., Bouadam, A., Sordoillet, A. et al. Determination of molecular size parameters and quantification of polyacrylic acid by high performance size-exclusion chromatography with triple detection. Anal Bioanal Chem 409, 2083–2092 (2017). https://doi.org/10.1007/s00216-016-0155-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0155-z

Keywords

Navigation