Skip to main content
Log in

Enrichment of serum biomarkers by magnetic metal-organic framework composites

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Highly efficient extraction of peptides from serum is critical for finding serum biomarkers using mass spectrometry, which still remains a great challenge. Currently, a bottom-up proteomics approach has been applied to discover serum biomarkers. However, the approach was labor intensive, time and cost consuming, and cannot meet the requirements for clinical application. In this work, Fe3O4/C@MIL-100 composites were synthesized to efficiently capture peptides from microwave-assisted formic acid digests of BSA and human serum prior to MALDI-TOF MS analysis. Fe3O4/C@MIL-100 composites exhibited size-selective adsorption performance, thus providing a rapid and convenient approach to enrich low-abundance peptides. Notably, the peptides’ mass fingerprinting of serum digestions between type 2 diabetes mellitus (T2DM) and healthy persons were distinguishable, which indicated the potential ability of this technique for T2DM diagnosis and rapid biomarker discovery.

Efficient extraction and identification of serum biomarkers using Fe3O4/C@MIL-100 composites from acid hydrolysate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198–207.

    Article  CAS  Google Scholar 

  2. Rodrigo MA, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal. 2014;95:245–55.

    Article  Google Scholar 

  3. Ahmed N, Barker G, Oliva K, Garfin D, Talmadge K, Georgiou H, et al. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics. 2003;3(10):1980–7.

    Article  CAS  Google Scholar 

  4. Berna M, Ackermann B. Increased throughput for low-abundance protein biomarker verification by liquid chromatography/tandem mass spectrometry. Anal Chem. 2009;81(10):3950–6.

    Article  CAS  Google Scholar 

  5. Cho YT, Su H, Huang TL, Chen HC, Wu WJ, Wu PC, et al. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry for clinical diagnosis. Clin Chim Acta. 2013;415:266–75.

    Article  CAS  Google Scholar 

  6. Switzar L, Giera M, Niessen WM. Protein digestion: an overview of the available techniques and recent developments. J Proteome Res. 2013;12(3):1067–77.

    Article  CAS  Google Scholar 

  7. Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN. Microwave-assisted proteomics. Mass Spectrom Rev. 2007;26(5):657–71.

    Article  CAS  Google Scholar 

  8. Li A, Sowder RC, Henderson LE, Moore SP, Garfinkel DJ, Fisher RJ. Chemical cleavage at aspartyl residues for protein identification. Anal Chem. 2001;73(22):5395–402.

    Article  CAS  Google Scholar 

  9. Swatkoski S, Gutierrez P, Wynne C, Petrov A, Dinman JD, Edwards N, et al. Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications. J Proteome Res. 2008;7(2):579–86.

    Article  CAS  Google Scholar 

  10. Swatkoski S, Russell SC, Edwards N, Fenselau C. Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores. Anal Chem. 2006;78(1):181–8.

    Article  CAS  Google Scholar 

  11. Alam A, Mataj A, Yang Y, Boysen RI, Bowden DK, Hearn MT. Rapid microwave-assisted chemical cleavage-mass spectrometric method for the identification of hemoglobin variants in blood. Anal Chem. 2010;82(21):8922–30.

    Article  CAS  Google Scholar 

  12. Zhang N, Li N, Li L. Liquid chromatography MALDI MS/MS for membrane proteome analysis. J Proteome Res. 2004;3(4):719–27.

    Article  CAS  Google Scholar 

  13. Zhong H, Marcus SL, Li L. Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J Am Soc Mass Spectrom. 2005;16(4):471–81.

    Article  CAS  Google Scholar 

  14. Swatkoski S, Gutierrez P, Ginter J, Petrov A, Dinman JD, Edwards N, et al. Integration of residue-specific acid cleavage into proteomic workflows. J Proteome Res. 2007;6(11):4525–7.

    Article  CAS  Google Scholar 

  15. Lo LH, Huang TL, Shiea J. Acid hydrolysis followed by matrix-assisted laser desorption/ionization mass spectrometry for the rapid diagnosis of serum protein biomarkers in patients with major depression. Rapid Commun Mass Spectrom. 2009;23(5):589–98.

    Article  CAS  Google Scholar 

  16. Huang T-L, Cho Y-T, Su H, Shiea J. Principle component analysis combined with matrix-assisted laser desorption ionization mass spectrometry for rapid diagnosing the sera of patients with major depression. Clin Chim Acta. 2013;424:175–81.

    Article  CAS  Google Scholar 

  17. Gu Z-Y, Yang C-X, Chang N, Yan X-P. Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res. 2012;45(5):734–45.

    Article  CAS  Google Scholar 

  18. Gu Z-Y, Chen Y-J, Jiang J-Q, Yan X-P. Metal–organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples. Chem Commun (Camb). 2011;47(16):4787–9.

    Article  CAS  Google Scholar 

  19. Ji Y, Xiong Z, Huang G, Liu J, Zhang Z, Liu Z, et al. Efficient enrichment of glycopeptides using metal–organic frameworks by hydrophilic interaction chromatography. Analyst. 2014;139(19):4987–93.

    Article  CAS  Google Scholar 

  20. Zhao M, Deng C, Zhang X. The design and synthesis of a hydrophilic core–shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research. Chem Commun (Camb). 2014;50(47):6228–31.

    Article  CAS  Google Scholar 

  21. Meng J, Shi C, Wei B, Yu W, Deng C, Zhang X. Preparation of Fe3O4@C@PANI magnetic microspheres for the extraction and analysis of phenolic compounds in water samples by gas chromatography–mass spectrometry. J Chromatogr A. 2011;1218(20):2841–7.

    Article  CAS  Google Scholar 

  22. Hortin GL, Sviridov D, Anderson NL. High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance. Clin Chem. 2008;54(10):1608–16.

    Article  CAS  Google Scholar 

  23. Anderson NL. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1(11):845–67.

    Article  CAS  Google Scholar 

  24. Bandow JE. Comparison of protein enrichment strategies for proteome analysis of plasma. Proteomics. 2010;10(7):1416–25.

    Article  CAS  Google Scholar 

  25. Li P, Yang J, Ma Q-Y, Wu Z, Huang C, Li X-Q, et al. Biomarkers screening between preoperative and postoperative patients in pancreatic cancer. Asian Pac J Cancer Prev. 2013;14(7):4161–5.

    Article  Google Scholar 

  26. Liao J, Zhang R, Qian H, Cao L, Zhang Y, Xu W, et al. Serum profiling based on fucosylated glycoproteins for differentiating between chronic hepatitis B and hepatocellular carcinoma. Biochem Biophys Res Commun. 2012;420(2):308–14.

    Article  CAS  Google Scholar 

  27. Kikkawa S, Sogawa K, Satoh M, Umemura H, Kodera Y, Matsushita K, et al. Identification of a novel biomarker for biliary tract cancer using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Proteomics. 2012;2012:1–8.

    Article  Google Scholar 

  28. Kaur P, Rizk NM, Ibrahim S, Younes N, Uppal A, Dennis K, et al. iTRAQ-based quantitative protein expression profiling and MRM verification of markers in type 2 diabetes. J Proteome Res. 2012;11(11):5527–39.

    Article  CAS  Google Scholar 

  29. Sundsten T, Ostenson CG, Bergsten P. Serum protein patterns in newly diagnosed type 2 diabetes mellitus—influence of diabetic environment and family history of diabetes. Diabetes Metab Res Rev. 2008;24(2):148–54.

    Article  CAS  Google Scholar 

  30. Lu CH, Lin ST, Chou HC, Lee YR, Chan HL. Proteomic analysis of retinopathy-related plasma biomarkers in diabetic patients. Arch Biochem Biophys. 2013;529(2):146–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants 21475095, 21106101, 81473472) and the Tianjin Natural Science Foundation (12JCZDJC29500, 13JCQNJC06300). Also, we are thankful to Technology Support Center of Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences for providing the use of experimental instruments and materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Feng Huang or Bin Qiao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human rights and informed consent

All procedures performed in studies involving human participants (healthy volunteers and patients) have been approved by the ethics committee and have been performed in accordance with ethical standards. Informed consent was obtained from all individual participants included in the study. This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, JP., Wang, H., Luo, T. et al. Enrichment of serum biomarkers by magnetic metal-organic framework composites. Anal Bioanal Chem 409, 1895–1904 (2017). https://doi.org/10.1007/s00216-016-0136-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0136-2

Keywords

Navigation