Skip to main content
Log in

A new approach for quantitative analysis of l-phenylalanine using a novel semi-sandwich immunometric assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Here, we describe a novel method for l-phenylalanine analysis using a sandwich-type immunometric assay approach for use as a new method for amino acid analysis. To overcome difficulties of the preparation of high-affinity and selectivity monoclonal antibodies against l-phenylalanine and the inability to use sandwich-type immunometric assays due to their small molecular weight, three procedures were examined. First, amino groups of l-phenylalanine were modified by “N-Fmoc-l-cysteine” (FC) residues and the derivative (FC-Phe) was used as a hapten. Immunization of mice with bovine serum albumin/FC-Phe conjugate successfully yielded specific monoclonal anti-FC-Phe antibodies. Second, a new derivatization reagent, “biotin linker conjugate of FC-Phe N-succinimidyl ester” (FC(Biotin)-NHS), was synthesized to convert l-phenylalanine to FC-(Biotin)-Phe as a hapten structure. The biotin moiety linked to the thiol group of cysteine formed a second binding site for streptavidin/horseradish peroxidase (HRP) conjugates for optical detection. Third, a new semi-sandwich-type immunometric assay was established using pre-derivatized l-phenylalanine, the monoclonal anti-FC-Phe antibody, and streptavidin/HRP conjugate (without second antibody). Using the new “semi-sandwich” immunometric assay system, a detection limit of 35 nM (60 amol per analysis) and a detection range of 0.1–20 μM were attained using a standard l-phenylalanine solution. Rat plasma samples were analyzed to test reliability. Intra-day assay precision was within 6 % of the coefficient of variation; inter-day variation was 0.1 %. The recovery rates were from 92.4 to 123.7 %. This is the first report of the quantitative determination of l-phenylalanine using a reliable semi-sandwich immunometric assay approach and will be applicable to the quantitative determination of other amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dooley KC (1992) Enzymatic method for phenylketonuria screening using phenylalanine dehydrogenase. Clin Biochem 25:271–275

    Article  CAS  Google Scholar 

  2. Keffler S, Denmeade R, Green A (1994) Neonatal screening for phenylketonuria: evaluation of an automated enzymatic method. Ann Clin Biochem 31:134–139

    CAS  Google Scholar 

  3. Hasan I, Gani RA, Akbar N, Noer S (2005) Correlation between branched chain amino acids to tyrosine ratio and Child Pugh score in liver cirrhosis patients. Indones J Gastroenterol Hepatol Dig Endosc 6:1–3

    Google Scholar 

  4. Watanabe A, Higashi T, Sakata T, Nagashima H (1984) Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 54:1875–1882

    Article  CAS  Google Scholar 

  5. Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D (2007) Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 214:8–14

    Article  Google Scholar 

  6. Holm E, Sedlaczek O, Grips E (1999) Amino acid metabolism in liver disease. Curr Opin Clin Nutr Metab Care 2:47–53

    Article  CAS  Google Scholar 

  7. Ferenci P, Wewalka F (1978) Plasma amino acids in hepatic encephalopathy. J Neural Transm Suppl 14:87–94

    CAS  Google Scholar 

  8. Obeid OA (2005) Plasma amino acid concentrations in patients with coronary heart disease: a comparison between UK Indian Asian and Caucasian men. Int J Vitam Nutr Res 75:267–273

    Article  CAS  Google Scholar 

  9. Gerber DA (1975) Decreased concentration of free histidine in serum in rheumatoid arthritis, an isolated amino acid abnormality not associated with generalized hypoaminoacidemia. J Rheumatol 2:384–392

    CAS  Google Scholar 

  10. Hong SY, Yang DH, Chang SK (1998) The relationship between plasma homocysteine and amino acid concentrations in patients with end-stage renal disease. J Ren Nutr 8:34–39

    Article  CAS  Google Scholar 

  11. Soltész G, Schultz K, Mestyán J, Horváth I (1978) Blood glucose and plasma amino acid concentrations in infants of diabetic mothers. Pediatrics 61:77–82

    Google Scholar 

  12. Mochizuki Y, Oishi M, Hara M, Takasu T (1996) Amino acid concentration in dementia of the Alzheimer type and multi-infarct dementia. Ann Clin Lab Sci 26:275–278

    CAS  Google Scholar 

  13. Felig P, Marliss E, Ohman JL, Cahill CF Jr (1970) Plasma amino acid levels in diabetic ketoacidosis. Diabetes 19:727–728

    CAS  Google Scholar 

  14. Noguchi Y, Zhang QW, Sugimoto T, Furuhata Y, Sakai R, Mori M, Takahashi M, Kimura T (2006) Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Am J Clin Nutr 83:513S–519S

    CAS  Google Scholar 

  15. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Stephen A, Carr SA, Vamsi K, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  Google Scholar 

  16. Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, Saruki N, Bando E, Kimura H, Imamura F, Moriyama M, Ikeda I, Chiba A, Oshita F, Imaizumi A, Yamamoto H, Miyano H, Horimoto K, Tochikubo O, Mitsushima T, Yamakado M, Okamoto N (2011) Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One 6:e24143

    Article  CAS  Google Scholar 

  17. Kimura T, Noguchi Y, Shikata N, Takahashi M (2009) Plasma amino acid analysis for diagnosis and amino acid-based metabolic networks. Curr Opin Clin Nutr Metab Care 12:49–53

    Article  CAS  Google Scholar 

  18. Mustafa A, Gupta S, Hudes GR, Egleston BL, Uzzo RG, Kruger WD (2011) Serum amino acid levels as a biomarker for renal cell carcinoma. J Urol 186:1206–1212

    Article  CAS  Google Scholar 

  19. Lüneburg N, Xanthakis V, Schwedhelm E, Sullivan LM, Maas R, Anderssohn M, Riederer U, Glazer NL, Vasan RS, Böger RH (2011) Reference intervals for plasma l-arginine and the l-arginine: asymmetric dimethylarginine ratio in the Framingham Offspring Cohort. J Nutr 141:2186–2190

    Article  Google Scholar 

  20. Wainer A (1967) The chromatography of ninhydrin negative compounds on an amino acid analyzer column. J Chromatogr 26:48–53

    Article  CAS  Google Scholar 

  21. Toyo'oka T, Miyano H, Imai K (1986) Amino acid composition analysis of minute amounts of cysteine-containing proteins using 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole and 4-fluoro-7-nitro-2,1,3-benzoxadiazole in combination with HPLC. Biomed Chromatogr 1:15–20

    Article  Google Scholar 

  22. Shimbo K, Oonuki T, Yahashi A, Hirayama K, Miyano H (2009) Precolumn derivatization reagents for high-speed analysis of amines and amino acids in biological fluid using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1483–1492

    Article  CAS  Google Scholar 

  23. Shimbo K, Yahashi A, Hirayama K, Nakazawa M, Miyano H (2009) Multifunctional and highly sensitive precolumn reagents for amino acids in liquid chromatography/tandem mass spectrometry. Anal Chem 81:5172–5179

    Article  CAS  Google Scholar 

  24. Soga T, Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72:1236–1241

    Article  CAS  Google Scholar 

  25. Persson J, Näsholm T (2001) A GC-MS method for determination of amino acid uptake by plants. Physiol Plant 113:352–358

    Article  CAS  Google Scholar 

  26. Li F, Qin X, Chen H, Qiu L, Guo Y, Liu H, Chen G, Song G, Wang X, Li F, Guo S, Wang B, Li Z (2013) Lipid profiling for early diagnosis and progression of colorectal cancer using direct-infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 27:24–34

    Article  Google Scholar 

  27. Thompson JW, Zhang H, Smith P, Hillman S, Moseley MA, Millington DS (2012) Extraction and analysis of carnitine and acylcarnitines by electrospray ionization tandem mass spectrometry directly from dried blood and plasma spots using a novel autosampler. Rapid Commun Mass Spectrom 26:2548–2554

    Article  Google Scholar 

  28. Kusakabe H, Midorikawa T, Fujishima A, Kuninaka A, Yoshino H (1983) Purification and purification of a new enzyme, l-glutamate oxidase, from Streptomyces sp. X-119-6 grown on wheat bran. Agric Biol Chem 47:1323–1328

    Article  CAS  Google Scholar 

  29. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871–874

    Article  CAS  Google Scholar 

  30. Kobayashi N, Oyama H, Suzuki I, Kato Y, Umemura T, Goto J (2010) Oligosaccharide-assisted direct immunosensing of small molecules. Anal Chem 82:4333–4433

    Article  CAS  Google Scholar 

  31. Kobayashi N, Oyama H (2011) Antibody engineering toward high-sensitivity high-throughput immunosensing of small molecules. Analyst 136:642–651

    Article  CAS  Google Scholar 

  32. Shimbo K, Yahashi A, Hirayama K, Nakazawa M, Miyano H (2009) Multifunctional and highly sensitive precolumn reagents for amino acids in liquid chromatography/tandem mass spectrometry. Anal Chem 81:5172–5179

    Article  CAS  Google Scholar 

  33. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  Google Scholar 

  34. Khreich N, Lamourette P, Renard PY, Clavé G, Fenaille F, Créminon C, Volland H (2009) A highly sensitive competitive enzyme immunoassay of broad specificity quantifying microcystins and nodularins in water samples. Toxicon 53:551–559

    Article  CAS  Google Scholar 

  35. Sreenath K, Venkatesh YP (2008) Analysis of erythritol in foods by polyclonal antibody-based indirect competitive ELISA. Anal Bioanal Chem 391:609–615

    Article  CAS  Google Scholar 

  36. Smith DS, Eremin SA (2008) Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem 391:1499–1507

    Article  CAS  Google Scholar 

  37. Volland H, Lamourette P, Nevers MC, Mazuet C, Ezan E, Neuburger LM, Popoff M, Créminon C (2008) Sensitive sandwich enzyme immunoassay for free or complexed Clostridium botulinum neurotoxin type A. J Immunol Methods 330:120–129

    Article  CAS  Google Scholar 

  38. Dixit CK, Vashist SK, O'Neill FT, O'Reilly B, MacCraith BD, O'Kennedy R (2010) Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Anal Chem 82:7049–7052

    Article  CAS  Google Scholar 

  39. Self CH, Dessi JL, Winger LA (1994) High-performance assays of small molecules: enhanced sensitivity, rapidity, and convenience demonstrated with a noncompetitive immunometric anti-immune complex assay system for digoxin. Clin Chem 40:2035–2041

    CAS  Google Scholar 

  40. Houk KN, Leach AG, Kim SP, Zhang X (2003) Binding affinities of host–guest, protein–ligand, and protein–transition-state complexes. Angew Chem Int Ed Engl 42:4872–4897

    Article  CAS  Google Scholar 

  41. Ueda H, Tsumoto K, Kubota K, Suzuki E, Nagamune T, Nishimura H, Schueler PA, Winter G, Kumagai I, Mohoney WC (1996) Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region. Nat Biotechnol 14:1714–1718

    Article  CAS  Google Scholar 

  42. Quinton J, Charruault L, Nevers MC, Volland H, Dognon JP, Créminon C, Taran F (2010) Toward the limits of sandwich immunoassay of very low molecular weight molecules. Anal Chem 82:2536–2540

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Yoko Miyama for her technical assistance. We also wish to thank Dr. Naoyuki Yamada for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Miyano.

Additional information

Published in the topical collection Amino Acid Analysis with guest editor Toshimasa Toyo'oka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, K., Mizukoshi, T. & Miyano, H. A new approach for quantitative analysis of l-phenylalanine using a novel semi-sandwich immunometric assay. Anal Bioanal Chem 405, 8093–8103 (2013). https://doi.org/10.1007/s00216-013-7081-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7081-0

Keywords

Navigation