Skip to main content
Log in

Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The in-source resonance ionization mass spectrometry technique was applied for quantification of ultratrace amounts of plutonium isotopes as a proof of principle study. In addition to an overall detection limit of 104 to 105 atoms, this method enables the unambiguous identification and individual quantification of the plutonium isotopes 238Pu and 241Pu which are of relevance for dating of radiogenic samples. Due to the element-selective ionization process, these isotopes can be measured even under a high surplus of isobaric contaminations from 238U or 241Am, which considerably simplifies chemical preparation. The technique was developed, tested, and characterized on a variety of synthetic and calibration samples and is presently applied to analyze environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Richter S, Alonso A, De Bolle W, Wellum R, Taylor P (1999) Int J Mass Spectrom 193(1):9. doi:10.1016/S1387-3806(99)00102-5

    Article  CAS  Google Scholar 

  2. Oughton DH, Fifield LK, Day JP, Cresswell RC, Skipperud L, Di Tada ML, Salbu B, Strand P, Drozcho E, Mokrov Y (2000) Environ Sci Technol 34(10):1938. doi:10.1021/es990847z

    Article  CAS  Google Scholar 

  3. Bürger S, Banik NL, Buda RA, Kratz JV, Kuczewski B, Trautmann N (2007) Radiochim Acta 95(8):433. doi:10.1524/ract.2007.95.8.433

    Article  Google Scholar 

  4. Arnold D (2006) Appl Radiat Isot 64(10–11):1137. Proceedings of the 15th International Conference on Radionuclide Metrology and its Applications. doi: 10.1016/j.apradiso.2006.02.010

  5. Hou X, Roos P (2008) Anal Chim Acta 608(2):105. doi:10.1016/j.aca.2007.12.012

    Article  CAS  Google Scholar 

  6. Macsik Z, Shinonaga T (2010) Appl Radiat Isot 68(12):2147. doi:10.1016/j.apradiso.2010.07.006

    Article  CAS  Google Scholar 

  7. Bürger S, Balsley SD, Baumann S, Berger J, Boulyga SF, Cunningham JA, Kappel S, Koepf A, Poths J (2012) Int J Mass Spectrom 311:40. doi:10.1016/j.ijms.2011.11.016

    Article  Google Scholar 

  8. Bürger S, Riciputi LR, Bostick DA, Turgeon S, McBay EH, Lavelle M (2009) Int J Mass Spectrom 286(2–3):70. doi:10.1016/j.ijms.2009.06.010

    Google Scholar 

  9. Jakopic R, Richter S, Kuhn H, Benedik L, Pihlar B, Aregbe Y (2009) Int J Mass Spectrom 279(2–3):87. doi:10.1016/j.ijms.2008.10.014

    CAS  Google Scholar 

  10. Schaumlöffel D, Giusti P, Zoriy M, Pickhardt C, Szpunar J, Lobinski R, Becker J (2005) J Anal At Spectrom 20(1):17. doi:10.1039/b411567h

    Article  Google Scholar 

  11. Ketterer ME, Szechenyi SC (2008) Spectrochim Acta B 63(7):719. doi:10.1016/j.sab.2008.04.018

    Article  Google Scholar 

  12. Weyer S, Anbar A, Gerdes A, Gordon G, Algeo T, Boyle E (2008) Geochim Cosmochim Acta 72(2):345. doi:10.1016/j.gca.2007.11.012

    Article  CAS  Google Scholar 

  13. Lindahl P, Keith-Roach M, Worsfold P, Choi MS, Shin HS, Lee SH (2010) Anal Chim Acta 671(1–2):61. doi:10.1016/j.aca.2010.05.012

    Article  CAS  Google Scholar 

  14. Zheng J, Yamada M (2012) Appl Radiat Isot. doi:10.1016/j.apradiso.2012.02.049, Available online

  15. Steier P, Bichler M, Fifield LK, Golser R, Kutschera W, Priller A, Quinto F, Richter S, Srncik M, Terrasi P, Wacker L, Wallner A, Wallner G, Wilcken KM, Wild EM (2008) Nucl Instrum Meth Phys Res B 266(10):2246. doi:10.1016/j.nimb.2008.03.002

    Article  CAS  Google Scholar 

  16. Brown T, Marchetti A, Martinelli R, Cox C, Knezovich J, Hamilton T (2004) Nucl Inst Meth B 223:788. doi:10.1016/j.nimb.2004.04.146

    Article  Google Scholar 

  17. Wacker L, Chamizo E, Fifield L, Stocker M, Suter A, Synal H (2005) Nucl Instrum Meth Phys Res B 240(1–2):452. doi:10.1016/j.nimb.2005.06.144

    Article  CAS  Google Scholar 

  18. Fifield LK (2008) Quat Geochronol 3(3):276. doi:10.1016/j.quageo.2007.10.003

    Article  Google Scholar 

  19. Dai X, Christl M, Kramer-Tremblay S, Synal HA (2012) J Anal At Spectrom 27(1):126. doi:10.1039/c1ja10264h

    Article  CAS  Google Scholar 

  20. Müller P, Bushaw B, Blaum K, Diel S, Geppert C, Nähler A, Trautmann N, Nörtershäuser W, Wendt K (2001) Fresenius J Anal Chem 370(5):508. doi:10.1007/s002160100815

    Article  Google Scholar 

  21. Ziegler SL, Bushaw BA (2008) Anal Chem 80(15):6029. doi:10.1021/ac800764j

    Article  CAS  Google Scholar 

  22. Trautmann N, Passler G, Wendt K (2004) Anal Bioanal Chem 378:348. doi:10.1007/s00216-003-2183-8

    Article  CAS  Google Scholar 

  23. Wendt K, Trautmann N (2005) Int J Mass Spectrom 242(2–3):161. doi:10.1016/j.ijms.2004.11.008

    CAS  Google Scholar 

  24. Maul J, Strachnov I, Eberhardt K, Karpuk S, Passler G, Trautmann N, Wendt K, Huber G (2006) Anal Bioanal Chem 386(1):109. doi:10.1007/s00216- 006-0584-1

    Article  CAS  Google Scholar 

  25. Levine J, Savina MR, Stephan T, Dauphas N, Davis AM, Knight KB, Pellin MJ (2009) Int J Mass Spectrom 288(1-3):36. doi:10.1016/j.ijms.2009.07.013

    Article  CAS  Google Scholar 

  26. Mattolat C, Rothe S, Schwellnus F, Gottwald T, Raeder S, Wendt K (2009) Am Inst Phys Conf Proc 1104(1):114. doi:10.1063/1.3115586

    CAS  Google Scholar 

  27. Grüning C, Huber G, Klopp P, Kratz J, Kunz P, Passler G, Trautmann N, Waldek A, Wendt K (2004) Int J Mass Spectrom 235(2):171. doi:10.1016/j.ijms.2004.04.013

    Article  Google Scholar 

  28. Raeder S, Stöbener N, Gottwald T, Passler G, Trautmann N, Wendt K (2011) Spectrochim Acta B 66(3-4):242. doi:10.1016/j.sab.2011.02.002

    Article  CAS  Google Scholar 

  29. Raeder S, Sonnenschein V, Gottwald T, Moore ID, Reponen M, Rothe S, Trautmann N, Wendt K (2011) J Phys B 55:165005. doi:10.1088/0953- 4075/44/16/165005

    Article  Google Scholar 

  30. Mattolat C, Gottwald T, Raeder S, Rothe S, Schwellnus F, Wendt K, Thörle-Pospiech P, Trautmann N (2010) Phys Rev A 81(5):052513. doi:10.1103/PhysRevA.81.052513

    Article  Google Scholar 

  31. Blaum K, Geppert C, Schreiber W, Hengstler J, Müller P, Nörtershäuser W, Wendt K, Bushaw B (2002) Anal Bioanal Chem 372:759. doi:10.1007/s00216-002-1268-0

    Article  CAS  Google Scholar 

  32. Payne MG, Allman SL, Parks JE (1991) Spectrochim Acta B 46(11):1439. doi:10.1016/0584- 8547(91)80197-B

    Article  Google Scholar 

  33. Vanhaecke F, Balcaen L, Malinovsky D (2009) J Anal At Spectrom 24:863. doi:10.1039/B903887F

    Article  CAS  Google Scholar 

  34. Isselhardt BH, Savina MR, Knight KB, Pellin MJ, Hutcheon ID, Prussin SG (2011) Anal Chem 83(7):2469. doi:10.1021/ac102586v

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft within the framework of the interdisciplinary research training group GRK 826 “Spurenanalytik von Elementspezies: Methodenentwicklungen und Anwendungen.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Raeder.

Additional information

Published in the topical collection Modern Aspects on Elemental Speciation with guest editors Thorsten Hoffmann and Klaus G. Heumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeder, S., Hakimi, A., Stöbener, N. et al. Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry. Anal Bioanal Chem 404, 2163–2172 (2012). https://doi.org/10.1007/s00216-012-6238-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6238-6

Keywords

Navigation