Skip to main content
Log in

Identification and determination of the dechlorination products of Dechlorane 602 in Great Lakes fish and Arctic beluga whales by gas chromatography–high resolution mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

During the course of our studies of in-use chlorinated flame retardants, such as Dechlorane Plus® and Dechloranes 602 and 604, blubber of beluga whales from the Canadian Arctic and lake trout and whitefish from the North American Great Lakes were found to contain two novel dechlorination products of Dechlorane 602 (Dec602). The structures of these compounds were characterized by experiments performed using both gas chromatography–high resolution mass spectrometry and Fourier transform mass spectrometry with a prepared technical mixture of monohydro and dihydroDec602 derivatives. These Dec602 derivatives are analogous to the well-known monohydro and dihydro photochemical degradation products of Mirex. The ratio of the two monohydroDec602 diastereomers varied between Lake Ontario fish and those from the upper lakes, but only one isomer was found in Arctic beluga, indicating that one isomer is either more stable or more bioaccumulative. Dechlorane Plus®, Dec603, and Dec 604 were not detected in Arctic beluga, but Dec602 and its monohydroDec602 derivative were measured in approximately equal concentrations, ranging from 25 to 300 pg/g lipid. In Great Lakes fish, concentrations of the monohydroDec602 derivatives were also close to those of Dec602, ranging from 2 to 67 ng/g lipid and were greatest in Lake Ontario. This study reports on the first measurements of dechlorane-related compounds in Arctic biota and the first detection of monohydroDec602 degradation products and their accumulation in biota.

Dechlorane 602 and its dechlorination product are detected in Great Lakes fish and Arctic beluga

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Georlette P (2001) Applications of halogen flame retardants. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing, Cambridge, pp 264–292

    Chapter  Google Scholar 

  2. Bocchini S, Camino G (2010) Halogen-containing flame retardants. In: Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials. CRC Press, Boca Raton, pp 75–106

    Google Scholar 

  3. Covaci A, Harrad S, Abdallah MA-E, Ali N, Law RJ (2011) Environ Int 37:532–556

    Article  CAS  Google Scholar 

  4. Sverko E, Tomy GT, Reiner EJ, Li Y-F, McCarry BE, Arnot JA, Law RJ, Hites RA (2011) Environ Sci Technol 45:5088–5098

    Article  CAS  Google Scholar 

  5. Hoh E, Zhu L, Hites RA (2006) Environ Sci Technol 40:1184–1189

    Article  CAS  Google Scholar 

  6. National Research Council (1978) Kepone/mirex/hexachlorocyclopentadiene: an environmental assessment. National Academy of Science, Washington

    Google Scholar 

  7. International Program on Chemical Safety (1984) Environmental health criteria 44: mirex. World Health Organization, Geneva

    Google Scholar 

  8. Shen L, Reiner EJ, MacPherson KA, Kolic TM, Sverko E, Helm PA, Bhavsar SP, Brindle ID, Marvin CH (2010) Environ Sci Technol 44:760–766

    Article  CAS  Google Scholar 

  9. Shen L, Reiner EJ, MacPherson KA, Kolic TM, Helm PA, Richman LA, Marvin CH, Burniston DA, Hill B, Brindle ID, McCrindle R, Chittim BG (2011) Environ Sci Technol 45:693–699

    Article  CAS  Google Scholar 

  10. Shen L, Reiner EJ, Helm PA, Marvin CH, Hill B, Zhang X, MacPherson KA, Kolic TM, Tomy GT, Brindle ID (2011) Environ Sci Technol 45:3333–3340

    Article  CAS  Google Scholar 

  11. Yang R, Wei H, Guo J, McLeod C, Li A, Sturchio NC (2011) Environ Sci Technol 45:5156–5163

    Article  CAS  Google Scholar 

  12. Norstrom RJ, Hallet DJ, Onuska FI, Comba ME (1980) Environ Sci Technol 14:860–866

    Article  CAS  Google Scholar 

  13. Mudambi AR, Hassett JP, McDowell WH, Scrudato RJ (1992) J Great Lakes Res 18:405–414

    Article  CAS  Google Scholar 

  14. Gibson JR, Ivie GW, Dorough JW (1972) J Agric Food Chem 20:1246–1248

    Article  CAS  Google Scholar 

  15. Alley EG, Dollar DA, Layton BR, Minyard JP Jr (1973) J Agric Food Chem 21:138–139

    Article  CAS  Google Scholar 

  16. Carlson DA, Konyha KD, Wheeler WB, Marshall GP, Zaylskie RG (1976) Science 194:939–941

    Article  CAS  Google Scholar 

  17. Francis BM, Metcalf RL (1984) Environ Health Perspect 54:341–346

    Article  CAS  Google Scholar 

  18. Laboratory Services Branch (2008) The determination of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like polychlorinated biphenyls in environmental matrices by GC-MS. Method DFPCB-E3418. Ontario Ministry of the Environment, Toronto

    Google Scholar 

  19. Tomy GT, Pleskach K, Oswald T, Halldorson THJ, Helm PA, Marvin CH, MacInnis G (2008) Environ Sci Technol 42:3634–3639

    Article  CAS  Google Scholar 

  20. Taguchi VY, Nieckarz RJ, Clement RE, Krolik S, Williams R (2010) J Am Soc Mass Spectrom 21:1918–1921

    CAS  Google Scholar 

  21. International Programme on Chemical Safety (1991) Environmental health criteria 120: hexachlorocyclopentadiene. World Health Organization, Geneva

    Google Scholar 

  22. Tureček F, Hanuš V (1984) Mass Spectrom Rev 3:85–152

    Article  Google Scholar 

  23. Alley EG, Layton R (1974) In: Hague R, Biros FJ (eds) Mass spectrometry and NMR spectroscopy in pesticide chemistry. Plenum Press, New York

    Google Scholar 

  24. Sverko E, Tomy GT, Marvin CH, Zaruk D, Reiner E, Helm PA, Hill B, McCarry BE (2008) Environ Sci Technol 42:361–366

    Article  CAS  Google Scholar 

  25. Norstrom RJ, Hallett DJ, Sonstegard RA (1978) J Fish Res Board Can 35:1401–1409

    Article  CAS  Google Scholar 

  26. Stern GA, Macdonald CR, Armstrong D, Dunn B, Fuchs C, Harwood L, Muir DCG, Rosenberg B (2005) Sci Total Environ 351–352:344–368

    Article  Google Scholar 

  27. Fisk AT, Holst M, Hobson KA, Duffe J, Moisey J, Norstrom RJ (2002) Arch Environ Contam Toxicol 42:118–126

    Article  CAS  Google Scholar 

  28. Braune BM (2007) Environ Poll 148:599–613

    Article  CAS  Google Scholar 

  29. Huckins JN, Stalling DL, Petty JD, Buckler DR, Johnson BT (1982) J Agric Food Chem 30:1020–1027

    Article  CAS  Google Scholar 

  30. Andrade PSL, Wheeler WB (1974) Bull Environ Contam Toxicol 11:415–416

    Article  CAS  Google Scholar 

  31. Ivie GW, Dorough HW, Alley EG (1974) J Agric Food Chem 22:933–935

    Article  CAS  Google Scholar 

  32. Mudambi AR, Hassett JP (1988) Chemosphere 17:1133–1146

    Article  CAS  Google Scholar 

  33. Burns SE, Hassett JP, Rossi MV (1996) Environ Sci Technol 30:2934–2941

    Article  CAS  Google Scholar 

  34. Burns SE, Hassett JP, Rossi MV (1997) Environ Sci Technol 31:1365–1371

    Article  CAS  Google Scholar 

  35. Strachan WMJ, Eisenreich SJ (1988) Mass balancing of toxic chemicals in the Great Lakes: the role of atmospheric deposition. International Joint Commission, Windsor

    Google Scholar 

  36. Hoff RA, Muir DCG, Grift NP (1992) Environ Sci Technol 26:266–275

    Article  CAS  Google Scholar 

  37. Hargrave BT, Vass WP, Erickson PE, Fowler BR (1988) Tellus 40B:480–493

    Article  CAS  Google Scholar 

  38. Hoff RM, Chan K-W (1986) Chemosphere 15:449–452

    Article  CAS  Google Scholar 

  39. Hung H, Halsall CJ, Blanchard P, Li HH, Fellin P, Stern G, Rosenberg B (2002) Environ Sci Technol 36:862–868

    Article  CAS  Google Scholar 

  40. Möller A, Xie Z, Cai M, Zhong G, Huang P, Cai M, Sturm R, He J, Ebinghaus R (2011) Environ Sci Technol 45:6793–6799

    Article  Google Scholar 

  41. Möller A, Xie Z, Sturm R, Ebinghaus R (2010) Environ Sci Technol 44:8977–8982

    Article  Google Scholar 

Download references

Acknowledgments

We thank Liad Haimovici (Ministry of Environment), Kerri Pleskach, and Bruno Rosenberg (Fisheries & Oceans) for preparing the beluga samples for analysis and Xianming Zhang (University of Toronto) for estimating chemical properties. L. Shen and K. Jobst gratefully acknowledge financial support provided in part through the Canada-Ontario Agreement respecting the Great Lakes program. KJJ thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for a Visiting Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Reiner.

Additional information

Published in the topical collection Emerging Contaminants in Biota with guest editors Yolanda Picó and Damià Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Jobst, K.J., Helm, P.A. et al. Identification and determination of the dechlorination products of Dechlorane 602 in Great Lakes fish and Arctic beluga whales by gas chromatography–high resolution mass spectrometry. Anal Bioanal Chem 404, 2737–2748 (2012). https://doi.org/10.1007/s00216-012-6164-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6164-7

Keywords

Navigation