Skip to main content
Log in

Miniaturized extraction methods of triclosan from aqueous and fish roe samples. Bioconcentration studies in zebrafish larvae (Danio rerio)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Triclosan, an antibacterial and antifungal agent, is widely used in household and personal care products, processed foods and food packaging, etc., and thus also released into the environment. Triclosan is acutely and chronically toxic to aquatic organisms and bioaccumulates in fish tissue. Here, we propose a new miniaturized triclosan extraction method for aqueous and fish roe samples, based on the use of a vortex mixer and an ultrasonic probe, respectively, and useful for triclosan determination by gas chromatography coupled to a micro electron capture detector. Different solvents for extraction and sorbents for clean-up purposes were tested. Multivariate optimization of the variables affecting ultrasonic extraction (ultrasound radiation amplitude, sonication time, sample temperature, and the ratio of sample amount and extracting volume) was carried out. Solvent extraction using ethyl acetate and further clean-up with mixed bed cartridges with two layers of Florisil® and Florisil® impregnated with 10% sulfuric acid only for fish roe samples was finally selected. Extraction efficiencies of up to 95% and 90%, and detection limits of 0.165 ng ml−1 and 2.7 ng g−1 for aqueous and fish roe samples were obtained, respectively. The optimized method was used in bioconcentration studies with zebrafish larvae (Danio rerio), as an alternative method to the Organization for Economic Cooperation and Development technical guideline 305. Bioconcentration values, BCF = 2,630 and 2,018 at exposure concentrations of 30 and 3 μg L−1, respectively, were assessed. These results are in agreement with those reported in the literature, showing the feasibility of the method for estimation of toxicokinetic parameters and bioconcentration factors using zebrafish larvae instead of adult fishes, reducing considerable animal testing, as suggested by the European legislation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ying GG, Kookana RS (2007) Environ Int 33:199–205

    Article  CAS  Google Scholar 

  2. Singer H, Müller S, Tixier C, Pillonel L (2002) Environ Sci Technol 36:4998–5004

    Article  CAS  Google Scholar 

  3. Canosa P, Rodriguez I, Rubí E, Ramil M, Cela R (2008) J Chromatogr A 1188:132–139

    Article  CAS  Google Scholar 

  4. Sanchez-Silva A, Sendón-García R, López-Hernandez J, Paseiro-Losada P (2005) J Sep Sci 28:65

    Article  Google Scholar 

  5. Official Journal of the European Union L 75/25. Commission Decision2010/169/EU

  6. Food Contact Materials. Registers and lists. Commission Decision EC 1935/2004. Revised 2010

  7. Registration Eligibility Decision for Triclosan List B Case No. 2340. EPA 739-RO-8009 September 2008 www.epa.gov

  8. Rule K, Ebbett V, Vikesland PJ (2005) Environ Toxicol Chem 24:517–525

    Article  Google Scholar 

  9. Canosa P, Morales S, Rodríguez I, Rubí E, Cela R, Gómez M (2005) Anal Bioanal Chem 383:1119–1126

    Article  CAS  Google Scholar 

  10. Oliveira R, Domingues I, Koppe Grisolia C, Soares AMVM (2009) Environ Sci Pollut Res 16:679–688

    Article  CAS  Google Scholar 

  11. Samsoe-Petersen L, Winther-Nielsen M, Madsen T, Danish EPA (2003) Fate and effects of triclosan. Environmental project no. 861

  12. European Commission (2006) Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency. European Commission, ed. Official J Eur Union

  13. European Commission (2008) Council Regulation (EC) No. 440/2008 of 30 May 2008 Laying Down Test Methods Pursuant to Regulation (EC) No. 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH). European Commission, ed. Official J Eur Union

  14. Test Nº 305 (1996) Bioconcentration: flow-through fish test. OECD series on testing and assessment. Organisation for Economic Co-operation and Development (OECD)

  15. Scholz S, Fischer MS, Gündel U, Küster E, Luckenbach T, Voelker D (2008) Environ Sci Pollut Res 15(5):394–404

    Article  CAS  Google Scholar 

  16. Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T (2011) Reproduc Toxicol. doi:10.1016/j.reprotox.2011.06.121

  17. OECD (2006) Fish embryo toxicity test. Organization for Economic Co-Operation and Development, Paris

    Google Scholar 

  18. Petersen GI, Kristensen P (1998) Environ Toxicol Chem 17(7):1385–1395

    Article  CAS  Google Scholar 

  19. Teraoka H, Dong W, Hiraga T (2003) Congenit Anom 43(2):123–132

    Article  CAS  Google Scholar 

  20. Parkerton TF, Arnot JA, Weisbrod AV, Russom C, Hoke RA, Woodburn K, Traas T, Bonnell M, Burkhard LP, Lampi MA (2008) Integr Environ Assess Manag 4(2):139–155

    Article  CAS  Google Scholar 

  21. López-Serrano A, Sanz-Landaluze J, Muñoz-Olivas R, Guinea J, Cámara C (2011) Water Res 45:6515–6524

    Article  Google Scholar 

  22. Cuello S, Sanz-Landaluze J, Madrid Y, Guinea J, Cámara C (2011) Talanta. doi:10.1016/j.talanta.2011.12.011

  23. Canosa P (2008) Doctoral thesis Santiago de Compostela University

  24. Azzouz A, Souhail B, Ballesteros E (2010) J Chromatogr A1217:2956–2963

    Article  Google Scholar 

  25. Canosa P, Pérez-Palacios D, Garrido-López A, Tena MT, Rodríguez I, Rubí E, Cela R (2007) J Chromatogr A 1161:105–112

    Article  CAS  Google Scholar 

  26. Cha J, Cupples AM (2009) Water Res 43:2522–2530

    Article  CAS  Google Scholar 

  27. Canosa P, Rodríguez I, Rubí E, Cela R (2007) Anal Chem 79:1675–1681

    Article  CAS  Google Scholar 

  28. Santos HM, Capelo JL (2007) Talanta 73:795–802

    Article  CAS  Google Scholar 

  29. Tadeo JL, Sánchez-Brunete C, Albero B, García-Valcárcel AI (2010) J Chromatogr A 1217:2415–2440

    Article  CAS  Google Scholar 

  30. Sanz-Landaluze J, Bartolomé L, Zuloaga O, Gonzalez L, Dietz C, Cámara C (2006) Anal Bioanal Chem 384:1331–1340

    Article  CAS  Google Scholar 

  31. Xu J, Wu L, Chen W, Chang AC (2008) J Chromatogr A 1202:189–195

    Article  CAS  Google Scholar 

  32. Ramos L, Ramos JJ, Brinkman UATh (2005) Anal Bioanal Chem 381:119–140

    Article  CAS  Google Scholar 

  33. Jánská M, Tomaniová M, Hajslová J, Kocourek V (2004) Anal Chim Acta 520:93–103

    Article  Google Scholar 

  34. Casas Ferreira AM, Möderb M, Fernández Laespada ME (2011) J Chromatogr A 1218:3837–3844

    Article  Google Scholar 

  35. Zhenga C, Zhaob J, Baoa P, Gaob J, Hea J (2011) J Chromatogr A 1218:3830–3836

    Article  Google Scholar 

  36. Farré M, Asperger D, Kantiani L, González S, Petrovic M, Barceló D (2008) Anal Bioanal Chem 390:1999–2007

    Article  Google Scholar 

  37. Leiker TJ, Abney SR, Goodbred SL, Rosen MR (2009) Sci Total Environ 407:2102–2114

    Article  CAS  Google Scholar 

  38. Mottaleb MA, Usenko S, O’Donnel JG, Ramirez AJ, Brooks BW, Chambliss CK (2009) J Chromatogr A 1216:815–823

    Article  CAS  Google Scholar 

  39. Allmyr M, McLachlan MS, Sandborg-Englund G, Adolfsson-Erici M (2006) Anal Chem 78:6542

    Article  CAS  Google Scholar 

  40. Chu S, Metcalfe CD (2007) J Chromatogr A 1164:212–218

    Article  CAS  Google Scholar 

  41. Coogan MA, Edziyie RE, La Point TW, Venables BJ (2007) Chemosphere 67:1911–1918

    Article  CAS  Google Scholar 

  42. Sanchez Silva A, Cruz Freire JM, Paseiro Losada P (2010) Eur Food Res Technol 230:957

    Article  Google Scholar 

  43. Westerfield M (2007) The Zebrafish book, fifthth edn. University of Oregon, Eugene

    Google Scholar 

  44. Japanese Ministry of Economy, Trade and Industry (METI)—National Institute of Technology and Evaluation (NITE) (2006) Biodegradation and bioconcentration database of the existing chemical substances http://www.safe.nite.go.jp/english/kizon/KIZON_start_hazkizon.html

  45. Orvos DR, Versteeg DJ, Inauen J, Dapdevielle M, Rothenstein A, Cunningham V (2002) Environ Toxicol Chem 21:1338–1349

    Article  CAS  Google Scholar 

  46. Gobas FAPC, Zhang X (1992) Chemosphere 25(12):1961–1971

    Article  CAS  Google Scholar 

  47. Gabric AJ, Connell DW, Bell PRF (1990) Water Res 24(10):1225–1231

    Article  CAS  Google Scholar 

  48. Mortimer MR, Cornnell DW (1993) Aust J Mar Freshwat Res 44(4):565–576

    Article  CAS  Google Scholar 

  49. Sanz-Landaluze J, Bocanegra-Salazar, Ortiz-Pérez D, Cámara C (2010) J Chromatogr A 1217:3567–3574

    Article  CAS  Google Scholar 

  50. Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    Google Scholar 

  51. Deming SN, Morgan SL (1993) Experimental design: a chemometrical approach. Elsevier, Amsterdam

    Google Scholar 

  52. Komjarova I, Blust R (2009) Environ Sci Technol 43:7958–7963

    Article  CAS  Google Scholar 

  53. Petersen G, Kristensen P (1998) Environ Toxicol Chem 17:1385–1395

    Article  CAS  Google Scholar 

  54. Fujikawa M, Nakao K, Shimizu R, Akamatsu M (2009) Chemosphere 74:751–757

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Projects CTQ2008-01031/BQU from the Spanish Science and Innovation Department, 046/PC08/2-14.4 from Spanish Environmental Department and S2009/AGR-1464 (ANALISYC-II) from the Comunidad Autónoma of Madrid (Spain). R. Gonzalo-Lumbreras thanks the Comunidad Autónoma of Madrid (Spain) for a postdoctoral fellowship. We are grateful to Dr. M.E. León Gonzalez for the analysis of samples by cLC-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sanz-Landaluze.

Additional information

Published in the special issue Euroanalysis XVI (The European Conference on Analytical Chemistry) with guest editor Slavica Ražić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalo-Lumbreras, R., Sanz-Landaluze, J., Guinea, J. et al. Miniaturized extraction methods of triclosan from aqueous and fish roe samples. Bioconcentration studies in zebrafish larvae (Danio rerio). Anal Bioanal Chem 403, 927–937 (2012). https://doi.org/10.1007/s00216-012-5713-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5713-4

Keywords

Navigation