Skip to main content
Log in

First field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer for the on-line detection of particle-bound polycyclic aromatic hydrocarbons

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The on-line analysis of single aerosol particles with mass spectrometrical methods is an important tool for the investigation of aerosols. Often, a single laser pulse is used for one-step laser desorption/ionisation of aerosol particles. Resulting ions are detected with time-of-flight mass spectrometry. With this method, the detection of inorganic compounds is possible. The detection of more fragile organic compounds and carbon clusters can be accomplished by separating the desorption and the ionisation in two steps, e.g. by using two laser pulses. A further method is, using a heated metal surface for thermal desorption of aerosol particles. If an ultraviolet laser is used for ionisation, a selective ionisation of polycyclic aromatic hydrocarbons (PAH) and alkylated PAH is possible via a resonance-enhanced multiphoton-ionisation process. Laser velocimetry allows individual laser triggering for single particles and additionally delivers information on aerodynamic particle diameters. It was shown that particles deriving from different combustion sources can be differentiated according to their PAH patterns. For example, retene, a C4-alkylated phenanthrene derivative, is a marker for the combustion of coniferous wood. In this paper, the first field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer during a measurement campaign in Augsburg, Germany in winter 2010 is presented. Larger PAH-containing particles (i.e. with aerodynamic diameters larger than 1 μm), which are suspected to be originated by re-suspension processes of agglomerated material, were in the focus of the investigation. Due to the low concentration of these particles, an on-line virtual impactor enrichment system was used. The detection of particle-bound PAH in ambient particles in this larger size region was possible and in addition, retene could be detected on several particles, which allows to identify wood combustion as generic source of these particles. The observed diurnal distribution of these larger particles, however, support the origin by traffic induced re-suspension of sedimented/agglomerated material.

TD-REMPI mass spectrum of a single particle from ambient air exhibiting an aerodynamic diameter of 1.3 μm, showing typical PAH masses. The intense peak at m/z = 234 (retene) allows to identify wood combustion as a generic source of this particle

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dockery DW, Pope CA, Xu XP, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) N Engl J Med 329(24):1753

    Article  CAS  Google Scholar 

  2. Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Atkinson R, Le Tertre A, Bobros J, Celko M, Goren A, Forsberg B, Michelozzi P, Rabczenko D, Ruiz EA, Katsouyanni K (2002) Epidemiology 13(1):87

    Article  Google Scholar 

  3. Gauderman WJ, Avol E, Gilliland F (2004) N Engl J Med 351(25):2653

    CAS  Google Scholar 

  4. Oberdörster G, Gelein RM, Ferin J, Weiss B (1995) Inhal Toxicol 7(1):111

    Article  Google Scholar 

  5. Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J (1992) Environ Health Perspect 97:193

    Google Scholar 

  6. Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Am J Respir Crit Care Med 155(4):1376

    CAS  Google Scholar 

  7. Pope CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW (1995) Am J Respir Crit Care Med 151:669

    Google Scholar 

  8. Wichmann HE, Spix C, Tuch T, Wolke G, Peters A, Heinrich J, Kreyling WG, Heyder J (2000) Research Report Health Effects Institut 98(98):5

    Google Scholar 

  9. Durant JL, Thilly WG, Hemond HF, Lafleur AL (1994) Environ Sci Technol 28(12):2033

    Article  CAS  Google Scholar 

  10. Villalobos-Pietrini R, Hernandez-Mena L, Amador-Munoz O, Munive-Colin Z, Bravo-Cabrera JL, Gomez-Arroyo S, Frias-Villegas A, Waliszewski S, Ramirez-Pulido J, Ortiz-Muniz R (2007) Mutat Res Genet Toxicol Environ Mutagen 634(1–2):192

    Article  CAS  Google Scholar 

  11. Moller P, Folkmann JK, Forchhammer L, Bruner EV, Danielsen PH, Risom L, Loft S (2008) Cancer Lett 266(1):84, Oxidative Stress and Carcinogenesis Special Issue

    Article  CAS  Google Scholar 

  12. Mahadevan B, Marstont CP, Dashwood WM, Li YH, Pereira C, Baird WM (2005) Chemical Research In Toxicology 18(2):224

    Article  CAS  Google Scholar 

  13. Sklorz M, Briede JJ, Schnelle-Kreis J, Liu Y, Cyrys J, de Kok TM, Zimmermann R (2007) J Toxicol Environ Health A (Current Issues) 70:1866

    Article  CAS  Google Scholar 

  14. Nielsen SE, Young JF, Daneshwar B, Lauridsen ST, Knuthsen P, Sandstrom B, Dragsted LO (1999) Br J Nutr 81:447

    CAS  Google Scholar 

  15. Delfino RJ, Staimer N, Tjoa T, Arhami M, Polidori A, Gillen DL, Kleinman MT, Schauer JJ, Sioutas C (2010) Environ Health Perspect 118(6):756

    Article  CAS  Google Scholar 

  16. Kraus U, Breitner S, Schnelle-Kreis J, Cyrys J, Lanki T, Räckerl R, Schneider A, Bräske I, Gu J, Devlin R, Wichmann HE, Zimmermann R, Peters A (2011) Inhal Toxicol 23(7):431

    Article  CAS  Google Scholar 

  17. Sinha MP (1984) Review of Scientic Instruments 55(6):886

    Article  CAS  Google Scholar 

  18. Sinha MP, Friedlander SK (1985) Anal Chem 57(9):1880

    Article  CAS  Google Scholar 

  19. Marijnissen J, Scarlett B, Verheijen P (1988) Journal of Aerosol Science 19(7):1307

    Article  CAS  Google Scholar 

  20. Prather KA, Nordmeyer T, Salt K (1994) Anal Chem 66(9):1403

    Article  CAS  Google Scholar 

  21. Carson PG, Neubauer KR, Johnston MV, Wexler AS (1995) Journal of Aerosol Science 26(4):535

    Article  CAS  Google Scholar 

  22. Carson PG, Johnston MV, Wexler AS (1997) Rapid Communications In Mass Spectrometry 11(9):993

    Article  CAS  Google Scholar 

  23. Murphy DM, Thomson DS (1995) Aerosol Science and Technology 22(3):237

    Article  CAS  Google Scholar 

  24. Liu DY, Rutherford D, Kinsey M, Prather KA (1997) Anal Chem 69(10):1808

    Article  CAS  Google Scholar 

  25. Reilly PTA, Gieray RA, Whitten WB, Ramsey JM (1998) Environ Sci Technol 32(18):2672

    Article  CAS  Google Scholar 

  26. Wood SH, Prather KA (1998) TrAC Trends in Analytical Chemistry 17(6):346

    Article  CAS  Google Scholar 

  27. Hinz KP, Kaufmann R, Spengler B (1996) Aerosol Science and Technology 24(4):233

    Article  CAS  Google Scholar 

  28. Suess DT, Prather KA (1999) Chem Rev 99(10):3007

    Article  CAS  Google Scholar 

  29. Zimmermann R, Ferge T, Galli M, Karlsson R (2003) Rapid Communications In Mass Spectrometry 17(8):851

    Article  CAS  Google Scholar 

  30. Hinz KP, Greweling M, Drews F, Spengler B (1999) Journal of the American Society For Mass Spectrometry 10(7):648

    Article  CAS  Google Scholar 

  31. Bhave PV, Fergenson DP, Prather KA, Cass GR (2001) Environ Sci Technol 35(10):2060

    Article  CAS  Google Scholar 

  32. Song XH, Faber NKM, Hopke PK, Suess DT, Prather KA, Schauer JJ, Cass GR (2001) Anal Chim Acta 446(1–2):329

    CAS  Google Scholar 

  33. Healy RM, Hellebust S, Kourtchev I, Allanic A, O’Connor IP, Bell JM, Healy DA, Sodeau JR, Wenger JC (2010) Atmospheric Chemistry and Physics 10(19):9593

    Article  CAS  Google Scholar 

  34. Silva PJ, Prather KA (2000) Anal Chem 72(15):3553

    Article  CAS  Google Scholar 

  35. Zimmermann R, Van Vaeck L, Davidovic M, Beckmann M, Adams F (2000) Environ Sci Technol 34(22):4780

    Article  CAS  Google Scholar 

  36. Ferge T, Karg E, Schröppel A, Tobias H, Frank M, Gard E, Zimmermann R (2004) Journal of Aerosol Science 35(Supplement 2):1169

    Article  Google Scholar 

  37. Morrical BD, Fergenson DP, Prather KA (1998) Journal of the American Society For Mass Spectrometry 9(10):1068

    Article  CAS  Google Scholar 

  38. Lubman DM, Kronick MN (1982) Anal Chem 54(13):2289

    Article  CAS  Google Scholar 

  39. Bente M, Sklorz M, Streibel T, Zimmermann R (2008) Anal Chem 80(23):8991

    Article  CAS  Google Scholar 

  40. Butcher DJ, Goeringer DE, Hurst GB (1999) Anal Chem 71(2):489

    Article  CAS  Google Scholar 

  41. Mühlberger F, Zimmermann R, Kettrup A (2001) Anal Chem 73(15):3590

    Article  Google Scholar 

  42. Bente M, Adam T, Ferge T, Gallavardin S, Sklorz M, Streibel T, Zimmermann R (2006) International Journal of Mass Spectrometry 258(1–3):86

    Article  CAS  Google Scholar 

  43. Bente M, Sklorz M, Streibel T, Zimmermann R (2009) Anal Chem 81(7):2525

    Article  CAS  Google Scholar 

  44. Jayne JT, Leard DC, Zhang X, Davidovits P, Smith KA, Kolb CE, Worsnop DR (2000) Aerosol Science and Technology 33(1):49

    Article  CAS  Google Scholar 

  45. Liu P, Ziemann PJ, Kittelson DB, McMurry PH (1995) Aerosol Science and Technology 22(3):293

    Article  CAS  Google Scholar 

  46. Liu P, Ziemann PJ, Kittelson DB, McMurry PH (1995) Aerosol Science and Technology 22(3):314

    Article  CAS  Google Scholar 

  47. Drewnick F, Hings SS, DeCarlo P, Jayne JT, Gonin M, Fuhrer K, Weimer S, Jimenez JL, Demerjian KL, Borrmann S, Worsnop DR (2005) Aerosol Science and Technology 39:637

    Article  CAS  Google Scholar 

  48. Svane M, Gustafsson TL, Kovacevik B, Noda J, Andersson PU, Nilsson ED, Pettersson JB (2009) Aerosol Science and Technology 43(7):653

    Article  CAS  Google Scholar 

  49. Orasche J, Schnelle-Kreis J, Abbaszade G, Zimmermann R (2011) Atmospheric Chemistry and Physics Discussions 11(5):15255

    Article  Google Scholar 

  50. Cass GR (1998) TrAC Trends in Analytical Chemistry 17(6):356

    Article  CAS  Google Scholar 

  51. Schnelle-Kreis J, Sklorz M, Orasche J, Stolzel M, Peters A, Zimmermann R (2007) Environ Sci Technol 41(11):3821

    Article  CAS  Google Scholar 

  52. H. Lamberg, K. Nuutinen, J. Tissari, J. Ruusunen, P. Yli-Piril, O. Sippula, M. Tapanainen, P. Jalava, U. Makkonen, K. Teinil, K. Saarnio, R. Hillamo, M.R. Hirvonen, J. Jokiniemi, Atmospheric Environment (in press), (2011).

Download references

Acknowledgements

The experimental setup for this work was enabled by the financial support of the Deutsche Forschungsgemeinschaft (German Science Foundation, grant numbers ZI 764/1-1 and ZI 764/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Zimmermann.

Additional information

Published in the special issue Aerosol Analysis with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oster, M., Elsasser, M., Schnelle-Kreis, J. et al. First field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer for the on-line detection of particle-bound polycyclic aromatic hydrocarbons. Anal Bioanal Chem 401, 3173–3182 (2011). https://doi.org/10.1007/s00216-011-5438-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5438-9

Keywords

Navigation