Skip to main content
Log in

Development of a high-throughput G4-FID assay for screening and evaluation of small molecules binding quadruplex nucleic acid structures

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

G4-FID (G-quadruplex fluorescent intercalator displacement) is a simple and fast method that allows to evaluate the affinity of a compound for G-quadruplex DNA and its selectivity towards duplex DNA. This assay is based on the loss of fluorescence of thiazole orange (TO) upon competitive displacement from DNA by a putative ligand. We describe here the development of a high-throughput version of this assay performed in 96-well microplates, and fully transposable to 384-well microplates. The test was calibrated with a set of G-quadruplex ligands characterized for their ability to bind quadruplex within a large range of affinity. The comparison of the results obtained in microplates and in cuvettes was conducted indicating a full agreement. Additionally, the spectral range of the test was enlarged using two other fluorescent on/off probes whose absorption are red-shifted (TO-PRO-3) and blue-shifted (Hoechst 33258) as compared to that of TO. These labels enable to screen a large diversity of compounds with various optical properties, which was exemplified by evaluation of affinity and selectivity of the porphyrin TMPyP4 that could not be evaluated previously. Altogether, our study demonstrates that the HT-G4-FID assay offers the possibility to label a large variety of G-quadruplexes of biological interest and should enable screening of collections of putative G4-ligands of high structural diversity. It thus represents a powerful tool to bring into light new ligands able to discriminate between quadruplexes of different structures.

High-throughput screening and evaluation of quadruplex nucleic acid ligands

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lipps HJ, Rhodes D (2009) G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 19(8):414–422

    Article  CAS  Google Scholar 

  2. Balasubramanian S, Neidle S (2009) G-quadruplex nucleic acids as therapeutic targets. Curr Opin Chem Biol 13(3):345–353

    Article  CAS  Google Scholar 

  3. Monchaud D, Teulade-Fichou M-P (2008) A hitchhiker's guide to G-quadruplex ligands. Org Biomol Chem 6(4):627–636

    Article  CAS  Google Scholar 

  4. De Cian A, Guittat L, Kaiser M, Sacca B, Amrane S, Bourdoncle A, Alberti P, Teulade-Fichou MP, Lacroix L, Mergny JL (2007) Fluorescence-based melting assays for studying quadruplex ligands. Methods 42(2):183–195

    Article  Google Scholar 

  5. Ragazzon P, Chaires JB (2007) Use of competition dialysis in the discovery of G-quadruplex selective ligands. Methods 43(4):313–323

    Article  CAS  Google Scholar 

  6. White EW, Tanious F, Ismail MA, Reszka AP, Neidle S, Boykin DW, Wilson WD (2007) Structure-specific recognition of quadruplex DNA by organic cations: influence of shape, substituents and charge. Biophys Chem 126(1–3):140–153

    Article  CAS  Google Scholar 

  7. Rosu F, De Pauw E, Gabelica V (2008) Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie 90(7):1074–1087

    Article  CAS  Google Scholar 

  8. Rachwal PA, Fox KR (2007) Quadruplex melting. Methods 43(4):291–301

    Article  CAS  Google Scholar 

  9. Paramasivan S, Bolton PH (2008) Mix and measure fluorescence screening for selective quadruplex binders. Nucleic Acids Res 36(17):e106

    Article  Google Scholar 

  10. Monchaud D, Allain C, Teulade-Fichou M-P (2006) Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg Med Chem Lett 16(18):4842–4845

    Article  CAS  Google Scholar 

  11. Monchaud D, Allain C, Bertrand H, Smargiasso N, Rosu F, Gabelica V, De Cian A, Mergny JL, Teulade-Fichou MP (2008) Ligands playing musical chairs with G-quadruplex DNA: a rapid and simple displacement assay for identifying selective G-quadruplex binders. Biochimie 90(8):1207–1223

    Article  CAS  Google Scholar 

  12. Monchaud D, Teulade-Fichou M-P (2010) G4-FID: a fluorescent DNA probe displacement assay for rapid evaluation of quadruplex ligands. In: Baumann P (ed) G-Quadruplex DNA. Methods in molecular biology, vol 608. Springer, Kansas City, pp 257–271

    Chapter  Google Scholar 

  13. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34(19):5402–5415

    Article  CAS  Google Scholar 

  14. Dai J, Carver M, Yang D (2008) Polymorphism of human telomeric quadruplex structures. Biochimie 90(8):1172–1183

    Article  CAS  Google Scholar 

  15. Kuryavyi V, Phan AT, Patel DJ (2010) Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res:gkq558

  16. Phan AT, Modi YS, Patel DJ (2004) Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc 126(28):8710–8716

    Article  CAS  Google Scholar 

  17. Lim KW, Alberti P, Guedin A, Lacroix L, Riou J-F, Royle NJ, Mergny J-L, Phan AT (2009) Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G-C-G-C tetrad. Nucleic Acids Res 37(18):6239–6248

    Article  CAS  Google Scholar 

  18. Wood EJ (1994) Molecular probes: handbook of fluorescent probes and research chemicals: by R P Haugland. pp 390. Interchim. 1992–1994. Biochem Educ 22(2):83

    Article  Google Scholar 

  19. Milanovich N, Suh M, Jankowiak R, Small GJ, Hayes JM (1996) Binding of TO-PRO-3 and TOTO-3 to DNA: fluorescence and hole-burning studies. J Phys Chem 100(21):9181–9186

    Article  CAS  Google Scholar 

  20. Sovenyhazy KM, Bordelon JA, Petty JT (2003) Spectroscopic studies of the multiple binding modes of a trimethine-bridged cyanine dye with DNA. Nucleic Acids Res 31(10):2561–2569

    Article  CAS  Google Scholar 

  21. Bailly C, Colson P, Henichart J-P, Houssier C (1993) The different binding modes of Hoechst 33258 to DNA studied by electric linear dichroism. Nucleic Acids Res 21(16):3705–3709

    Article  CAS  Google Scholar 

  22. Maiti S, Chaudhury NK, Chowdhury S (2003) Hoechst 33258 binds to G-quadruplex in the promoter region of human c-myc. Biochem Biophys Res Commun 310(2):505–512

    Article  CAS  Google Scholar 

  23. O'Neill BM, Ratto JE, Good KL, Tahmassebi DC, Helquist SA, Morales JC, Kool ET (2002) A highly effective nonpolar isostere of deoxyguanosine: synthesis, structure, stacking, and base pairing. J Org Chem 67(17):5869–5875

    Article  Google Scholar 

  24. Li G, Huang J, Zhang M, Zhou Y, Zhang D, Wu Z, Wang S, Weng X, Zhou X, Yang G (2008) Bis(benzimidazole)pyridine derivative as a new class of G-quadruplex inducing and stabilizing ligand. Chem Commun (Cambridge, U K) 38:4564–4566

    Article  Google Scholar 

  25. Huang J, Li G, Wu Z, Song Z, Zhou Y, Shuai L, Weng X, Zhou X, Yang G (2009) Bisbenzimidazole to benzobisimidazole: from binding B-form duplex DNA to recognizing different modes of telomereG-quadruplex. Chem Commun (Cambridge, U K) 8:902–904

    Article  Google Scholar 

  26. Jain AK, Reddy VV, Paul AKM, Bhattacharya S (2009) Synthesis and evaluation of a novel class of G-Quadruplex-stabilizing small molecules based on the 1,3-Phenylene-Bis(piperazinyl benzimidazole) system. Biochemistry 48(45):10693–10704

    Article  CAS  Google Scholar 

  27. Bhattacharya S, Chaudhuri P, Jain AK, Paul A (2010) Symmetrical bisbenzimidazoles with benzenediyl spacer: the role of the shape of the ligand on the stabilization and structural alterations in telomeric G-Quadruplex DNA and telomerase inhibition. Bioconjug Chem 21(7):1148–1159

    Article  CAS  Google Scholar 

  28. Phan AT, Kuryavyi V, Gaw HY, Patel DJ (2005) Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat Chem Biol 1(3):167–173

    Article  CAS  Google Scholar 

  29. Piazza A, Boule J-B, Lopes J, Mingo K, Largy E, Teulade-Fichou M-P, Nicolas A (2010) Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res 38(13):4337–4348

    Article  CAS  Google Scholar 

  30. Teulade-Fichou M-P, Carrasco C, Guittat L, Bailly C, Alberti P, Mergny J-L, David A, Lehn J-M, Wilson WD (2003) Selective recognition of G-quadruplex telomeric DNA by a Bis(quinacridine) macrocycle. J Am Chem Soc 125(16):4732–4740

    Article  CAS  Google Scholar 

  31. Murat P, Bonnet R, Van der Heyden A, Spinelli N, Labbé P, Monchaud D, Teulade-Fichou M-P, Dumy P, Defrancq E (2010) Template-assembled synthetic G-quadruplex (TASQ): a useful system for investigating the interactions of ligands with constrained quadruplex topologies. Chem Eur J 16(20):6106–6114

    CAS  Google Scholar 

  32. Hounsou C, Guittat L, Monchaud D, Jourdan M, Saettel N, Mergny JL, Teulade-Fichou MP (2007) G-quadruplex recognition by quinacridines: a SAR, NMR, and biological study. ChemMedChem 2(5):655–666

    Article  CAS  Google Scholar 

  33. Lemarteleur T, Gomez D, Paterski R, Mandine E, Mailliet P, Riou JF (2004) Stabilization of the c-myc gene promoter quadruplex by specific ligands' inhibitors of telomerase. Biochem Biophys Res Commun 323(3):802–808

    Article  CAS  Google Scholar 

  34. De Cian A, DeLemos E, Mergny J-L, Teulade-Fichou M-P, Monchaud D (2007) Highly efficient G-Quadruplex recognition by bisquinolinium compounds. J Am Chem Soc 129(7):1856–1857

    Article  Google Scholar 

  35. Bertrand H, Monchaud D, Cian AD, Guillot R, Mergny J-L, Teulade-Fichou M-P (2007) The importance of metal geometry in the recognition of G-quadruplex-DNA by metal-terpyridine complexes. Org Biomol Chem 5(16):2555–2559

    Article  CAS  Google Scholar 

  36. Debray J, Zeghida W, Jourdan M, Monchaud D, Dheu-Andries M-L, Dumy P, Teulade-Fichou M-P, Demeunynck M (2009) Synthesis and evaluation of fused bispyrimidinoacridines as novel pentacyclic analogues of quadruplex-binder BRACO-19. Org Biomol Chem 7(24):5219–5228

    Article  CAS  Google Scholar 

  37. De Cian A, Guittat L, Shin-ya K, Riou J-F, Mergny J-L (2005) Affinity and selectivity of G4 ligands measured by FRET. Nucleic Acids Symp Ser 49(1):235–236

    Article  Google Scholar 

  38. Ren J, Chaires JB (1999) Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 38(49):16067–16075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Marie Perrot and Yoann Lebreton for their technical assistance, Dr. Jean-Louis Mergny and Phong Lan Thao Tran for fruitful discussion, and we gratefully acknowledge the generous financial support from the Centre National de la Recherche Scientifique and the Institut Curie (joint PhD fellowship to E.L.) and the Agence Nationale de la Recherche (ANR) for financial support to F.H. (ANR-09-BLAN-0355 "G4Toolbox").

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Paule Teulade-Fichou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1307 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Largy, E., Hamon, F. & Teulade-Fichou, MP. Development of a high-throughput G4-FID assay for screening and evaluation of small molecules binding quadruplex nucleic acid structures. Anal Bioanal Chem 400, 3419–3427 (2011). https://doi.org/10.1007/s00216-011-5018-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5018-z

Keywords

Navigation