Skip to main content
Log in

Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method for the direct and sensitive analysis of powder samples has been developed by utilizing the characteristics of a transversely excited atmospheric (TEA) CO2 laser. In this study, a powder sample was placed in a container and covered by a metal mesh; the metal mesh functions to control the blowing-off of the powder. The container was then perpendicularly attached on a metal surface. When a TEA CO2 laser (1.5 J, 200 ns) was focused on the metal surface, a large hemispherical gas plasma (radius of around 8 mm) with long emission lifetime (several tens of microseconds) was produced without ablating the metal surface. The high-speed expansion force of the gas plasma samples the powder covered by the metal mesh and fine powder particles are sent into the gas plasma region to be dissociated and excited. Sensitive semi-quantitative analysis was made on organic powder samples such as powdered rice, starch, seaweed (agar), and supplements. The detection limit of heavy metals of Cr in powdered mineral supplement was approximately 0.55 mg/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mowrey DB (1986) The scientific validation of herbal medicine. Keats, Los Angeles

    Google Scholar 

  2. Saper RB, Kales SN, Paquin J, Burns MJ, Eisenberg DM, Davis RB, Phillips RS (2004) JAMA 292:2868–2873

    Article  CAS  Google Scholar 

  3. Holá M, Otruba V, Kanický V (2006) Spectrochim Acta 61:515–524

    Article  Google Scholar 

  4. Boulyga SF, Heumann KG (2005) Int J Mass Spectrom 242:291–296

    Article  CAS  Google Scholar 

  5. Ryan A (1997) ICP-AES Instrument at Work Varian

  6. Tame A, Hoobin D (1999) ICP-AES Instrument at Work Varian

  7. Ho CY, Jiang SJ (2002) J Anal At Spectrom 17:688–692

    Article  CAS  Google Scholar 

  8. Guohui L, Shouzhong F (1995) J Geochemical Exploration 55:75–80

    Article  Google Scholar 

  9. Paktunc D, Foster A, Heald S, Laflamme G (2004) Geochim Cosmochim Acta 68:969–983

    Article  CAS  Google Scholar 

  10. Alexander L, Klug HP (1948) Anal Chem 20:886–889

    Article  CAS  Google Scholar 

  11. Santos LMGd, Araujo RGO, Welz B, Jacob SdC, Vale MGR, Becker-Ross H (2009) Talanta 78:577–583

    Article  Google Scholar 

  12. Korn MdGA, Morte ESdB, Santos DCMBd, Castro JT, Barbosa JTP, Teixeira AP, Fernandes AP, Welz B, Santos WPCd, Santos EBGNd, Korn M (2008) Appl Spectrosc Review 43:67–92

    Article  CAS  Google Scholar 

  13. Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, Chichester

    Book  Google Scholar 

  14. Miziolek W, Palleschi V, Schechter I (2006) Laser-induced breakdown spectroscopy (LIBS), fundamentals and applications. Cambridge University Press, New York

    Book  Google Scholar 

  15. Radziemski LJ, Cremers DA (1989) Laser-induced plasma and applications. Marcel Dekker, New York

    Google Scholar 

  16. Bousquet B, Sirven JB, Canioni L (2007) Spectrochim Acta B 62:1582–1589

    Article  Google Scholar 

  17. Chan SY, Cheung NH (2000) Anal Chem 72:2087–2092

    Article  CAS  Google Scholar 

  18. Mukherjee D, Cheng MD (2008) Appl Spectrosc 62:554–562

    Article  CAS  Google Scholar 

  19. St-Onge L, Kwong E, Sabsabi M, Vadas EB (2002) Spectrochim Acta B 57:1131–1140

    Article  Google Scholar 

  20. Green RL, Mowery MD, Good JA, Higgins JP, Arrivo SM, McColough K, Mateos A, Reed RA (2005) Appl Spectrosc 59:340–347

    Article  CAS  Google Scholar 

  21. de Carvalho GGA, Nunes LC, de Souza PF, Krug FJ, Alegre TC, Santos D Jr (2010) J Anal Atom Spectrom 25:803–809

    Article  Google Scholar 

  22. Zheng H, Yueh FY, Miller T, Singh JP, Zeigler KE, Marra JC (2008) Spectrochim Acta B 63:968–974

    Article  Google Scholar 

  23. Anzanoa JM, Villoria MA, Medina ARz, Lasheras RJ (2006) Analyt Chim Acta 575:230–235

    Article  Google Scholar 

  24. Novotny K, Staňkov A, Hakkanen H, Tommola JK, Otruba V, Kanick V (2007) Spectrochim Acta B 62:1567–1574

    Article  Google Scholar 

  25. Gondal MA, Hussain T, Yamani ZH, Baig MA (2007) Talanta 72:642–649

    Article  CAS  Google Scholar 

  26. Krasniker R, Bulatov V, ScHechter I (2001) Spectrochim Acta B 56:609–618

    Article  Google Scholar 

  27. Kagawa K, Lie TJ, Hedwig R, Abdulmadjid SN, Suliyanti MM, Kurniawan H (2000) Jpn J Appl Phys 39:2643–2646

    Article  CAS  Google Scholar 

  28. Tran M, Sun Q, Smith B, Winefordner JD (2000) Analytical Chimica Acta 419:153–158

    Article  CAS  Google Scholar 

  29. Khumaeni A, Ramli M, Idris N, Lee YI, Kurniawan KH, Lie TJ, Deguchi Y, Niki H, Kagawa K (2009) Rapid quantitative analyses of elements on herb medicine and food powder using TEA CO2 laser-induced plasma, 4th international conference on laser probing—LAP 2008, American Institute of Physics, pp. 155

  30. Khumaeni A, Ramli M, Deguchi Y, Lee YI, Idris N, Kurniawan KH, Lie TJ, Kagawa K (2008) Appl Spectrosc 62:1344–1348

    Article  CAS  Google Scholar 

  31. Ramli M, Idris N, Fukumoto K, Niki H, Sakan F, Maruyama T, Kurniawan KH, Lie TJ, Kagawa K (2007) Spectrochim Acta B 62:1379–1389

    Article  Google Scholar 

  32. Ramli M, Idris N, Niki H, Kurniawan KH, Kagawa K (2008) Jpn J Appl Phys 47:1595–1601

    Article  CAS  Google Scholar 

  33. Khumaeni A, Lie ZS, Niki H, Fukumoto K, Maruyama T, Kagawa K (2010) Optic Review 17:285–289

    Article  CAS  Google Scholar 

  34. Khumaeni A, Niki H, Deguchi Y, Kurihara K, Kagawa K, Lee YI (2009) J Korean Physic Society 55:2441–2446

    Article  CAS  Google Scholar 

  35. Khumaeni A, Lie ZS, Lee YI, Kurihara K, Kagawa K, Niki H (2011) Appl Spectrosc 65:236–241

    Article  CAS  Google Scholar 

  36. Ingle JD Jr, Crouch SR (1988) Spectrochemical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiichiro Kagawa.

Additional information

Published in the special issue Laser-Induced Breakdown Spectroscopy with Guest Editors Jagdish P. Singh, Jose Almirall, Mohamad Sabsabi, and Andrzej Miziolek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khumaeni, A., Lie, Z.S., Niki, H. et al. Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm. Anal Bioanal Chem 400, 3279–3287 (2011). https://doi.org/10.1007/s00216-011-4801-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4801-1

Keywords

Navigation