Skip to main content
Log in

Multimethod analysis of Iranian Ilkhanate ceramics from the Takht-e Soleyman palace

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present work describes an analytical study performed on several pieces of Iranian Ilkhanate glazed ceramics from the Takht-e Soleyman palace (Iran, thirteenth century). Several advanced instrumental techniques, including pyrolysis–gas chromatography–mass spectrometry, Fourier transform IR spectroscopy, light microscopy, X-ray diffraction, scanning electron microscopy–X-ray microanalysis and voltammetry of microparticles, were used. The results obtained led to identification of the chemical and mineralogical composition of the pastes and glazes and the colouring agents. Corrosion processes associated with the extreme burial conditions in which the pieces remained for centuries were characterized in some areas of the glazes. A drying oil was identified as the main component of the organic material that was used as the adhesive for the decorative gold sheets applied on the glazes. This finding is in good agreement with traditional recipes. Interestingly, this drying oil exhibits an unusual composition as the gold sheet preserved it from external ageing agents (light, atmosphere, etc.).

Tiles with cobalt blue glaze from the indoor decoration of the Takht-e Soleyman Palace (13th-15th centuries, Iran). a: 20986-8, b: 20986-10 and c:21300a

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pérez-Arantegui J, Soto M, Castillo JR (1999) J Archaeol Sci 26:935–941

    Article  Google Scholar 

  2. Pérez-Arantegui J, Uruñuela MI, Castillo JR (1996) J Archaeol Sci 23:903–914

    Article  Google Scholar 

  3. Roldán C, Coll J, Ferrero J (2006) J Cult Herit 7:134–138

    Article  Google Scholar 

  4. Ricci C, Miliani C, Rosi F, Brunetti BG, Sgamellotti A (2007) J Non-Cryst Solids 353:1054–1059

    Article  CAS  Google Scholar 

  5. Čechák T, Hložek M, Musílek L, Trojek T (2007) Nucl Instrum Methods Phys Res B 263:54–57

    Article  Google Scholar 

  6. Zucchiatti A, Pascual C, Ynsa MD, Castelli L, Recio P, Criado E, Valle FJ, Climent-Font A (2008) J Eur Ceram Soc 28:757–762

    Article  CAS  Google Scholar 

  7. Zhu D, Cheng HR, Lin JW, Yang FY (2006) Nucl Instrum Methods Phys Res B 249:633–637

    Article  CAS  Google Scholar 

  8. Lin EK, Yu YC, Wang CW, Liu TY, Wu CM, Chen KM, Lin SS (1999) Nucl Instrum Methods Phys Res B 150:581–585

    Article  CAS  Google Scholar 

  9. Doménech A, Sánchez S, Doménech MT, Gimeno JV, Bosch F, Yusa DJ, Saurí MC (2002) Electroanalysis 14:685–696

    Article  Google Scholar 

  10. Doménech A, Doménech MT, Costa V (2009) In: Scholz F (ed) Monographs in electrochemistry. Berlin, Springer

    Google Scholar 

  11. Doménech A, Doménech MT, Moya M, Gimeno JV, Bosch F (2000) Electroanalysis 12:120–127

    Article  Google Scholar 

  12. Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Gimeno-Adelantado JV, Sánchez-Ramos S, Bosch-Reig F, Mateo-Castro R (2002) Talanta 56:161–174

    Article  Google Scholar 

  13. Doménech A, Doménech MT, Osete L (2001) Electroanalysis 13:927–935

    Article  Google Scholar 

  14. Doménech A, Doménech MT (2005) Electroanalysis 17:1959–1979

    Article  Google Scholar 

  15. Doménech-Carbó MT, Doménech-Carbó A, Yusá-Marco DJ, Ahmadi H (2008) J Cult Herit 9:e50–e54

    Article  Google Scholar 

  16. Pérez-Arantegui J, Resano M, García-Ruiz E, Vanhaecke F, Roldán C, Ferrero J, Coll J (2008) Talanta 74:1271–1280

    Article  Google Scholar 

  17. Catalano IM, Genga A, Laganara C, Laviano R, Mongone A, Marano D, Traini A (2007) J Archaeol Sci 34:503–511

    Article  Google Scholar 

  18. Pradell T, Molera J, Smith AD, Tite MS (2008) J Archaeol Sci 35:1202–1215

    Google Scholar 

  19. Huntley DL, Spielman KA, Habitch-Mauche JA, Herhahn CL, Flegal A (2007) J Archaeol Sci 34:1135–1147

    Article  Google Scholar 

  20. Roqué J, Molera J, Sciau P, Pantos E, Vendrell-Saz M (2006) J Eur Ceram Soc 26:3813–3824

    Article  Google Scholar 

  21. Colomban P, Ngockhoi D, Quanglien N, Roche C, Sagon G (2004) J Cult Herit 5:149–155

    Article  Google Scholar 

  22. Duffy KI, Calson JH, Swann CP (2002) Nucl Instrum Methods Phys Res B 189:369–372

    Article  CAS  Google Scholar 

  23. Molera J, Vendrell-Saz M, Pérez-Arantegui J (2001) J Archaeol Sci 28:331–340

    Article  Google Scholar 

  24. Scholz F, Meyer B (1989) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, a series of advances, vol 20. Dekker, New York, pp 1–87

    Google Scholar 

  25. Grygar T, Marken F, Schröder U, Scholz F (2002) Collect Czech Chem Commun 67:163–208

    Article  CAS  Google Scholar 

  26. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  27. Kreimeyer R (1987) Appl Clay Sci 2:175–183

    Article  CAS  Google Scholar 

  28. Caiger Smith A (1991) Lustre pottery. New Amsterdam Books, New York

    Google Scholar 

  29. Fernández Navarro JM (1991) El vidrio. CSIC, Madrid, pp 546–547

    Google Scholar 

  30. al-Saad Z (2002) J Archaeol Sci 29:803–810

    Article  Google Scholar 

  31. Molera J, Vendrell-Saz M (2001) J Archaeol Sci 28:331–340

    Article  Google Scholar 

  32. Mason RB, Tite MS (1997) Archaeometry 39:41, El vidrio 58

    Article  CAS  Google Scholar 

  33. Kleinmann B (1986) In: Proceedings of the 24th international archaeometry symposium. Smithsonian Institution Press, Washington, pp 73–84

    Google Scholar 

  34. Mason RB, Tite MS (1994) Archaeometry 36:77–91

    Article  CAS  Google Scholar 

  35. Domenech-Carbó A, Domenech-Carbó MT (2005) Electroanalysis 17:1959–1969

    Article  Google Scholar 

  36. Doménech-Carbó MT, Aura-Castro E, Lopez-Ballester E, Peris-Martínez V,Gimeno-Adelantado JV, Bosch-Reig F (1998) In: Proceedings of interim meeting ICOM-CC Glass, Ceramics and Related Materials Working Group Committee, Paterakis AB ed, EVTEK Institute of Art and Design, Vantaa pp 97–105

  37. Doménech A, Doménech MT, Edwards HGM (2008) Anal Chem 80:2704–2716

    Article  Google Scholar 

  38. Doménech-Carbó MT, Aura-Castro E, López-Ballester E, Péris-Martínez V, Gimeno-Adelantado V, Bosch-Reig F (1998) In: Paterakis A (ed) Glass ceramics and related materials. ICOM Committee for Conservation, Vantaa, pp 97–105

    Google Scholar 

  39. Macquet C, Thomassin JH (1992) Appl Clay Sci 7:17–31

    Article  CAS  Google Scholar 

  40. Cox GA, Ford BA (1993) J Mater Sci 28:5637–5647

    Article  CAS  Google Scholar 

  41. Silvestri A, Molin G, Salviulo G (2005) J Non-Cryst Solids 351:1338–1349

    Article  CAS  Google Scholar 

  42. Holakouei P (2008) Conservation of cultural and historical properties. Master thesis, University of Art, Tehran (in Persian)

  43. Vahab Nejad J (2000) Conservation and restoration of cultural properties. BA thesis, Art University of Isfahan (in Persian)

  44. Kashani A (1969) In: Afshar I (ed) Arayes-al javaher va nafayes-al arayes, 1st edn. National Heritage Community, Tehran (in Persian)

    Google Scholar 

  45. Aghajani H (1983) ASAR J Art 7–9 (in Persian)

  46. Van den Berg JDJ, Van den Berg KJ, Boon JJ (2001) Prog Org Coat 41:143–155

    Article  Google Scholar 

  47. Van den Brink OF, Eijkel GB, Boon JJ (2000) Thermochim Acta 365:1–23

    Article  Google Scholar 

  48. Mayumi I, Koyano M (1991) Int Biodeterior Biodegrad 28:23–35

    Article  Google Scholar 

  49. Janda K (2005) Int Biodeterior Biodegrad 55:149–152

    Article  CAS  Google Scholar 

  50. Kinderlerer JL (1993) Int Biodeterior Biodegrad 32:213–224

    Article  CAS  Google Scholar 

  51. Kinderlerer JL (1994) Int Biodeterior Biodegrad 33:345–354

    Article  CAS  Google Scholar 

  52. Chiavari G, Fabbri D, Prati S (2001) Chromatographia 53:311–314

    Article  CAS  Google Scholar 

  53. Bonaduce I, Colombini MP (2004) J Chromatogr A 1028:297–306

    Article  CAS  Google Scholar 

  54. Capitelli F, Learner T, Chiantore O (2002) J Anal Appl Pyrolysis 63:339–348

    Article  Google Scholar 

  55. Capitelli F (2004) J Anal Appl Pyrolysis 71:405–415

    Article  Google Scholar 

  56. Osete-Cortina L, Doménech-Carbó MT (2006) J Anal Appl Pyrolysis 76:144–153

    Article  CAS  Google Scholar 

  57. Chiavari G, Galletti FS, GC MR (1991) J Anal Appl Pyrolysis 20:253–261

    Article  CAS  Google Scholar 

  58. Shedrinsky AM, Stone RE, Baer NS (1991) J Anal Appl Pyrol 20:229–238

    Article  CAS  Google Scholar 

  59. Pastorova I, van der Berg KJ, Boon JJ, Verhoeven JW (1997) J Anal Appl Pyrolysis 43:41–57

    Article  CAS  Google Scholar 

  60. Challinor JM (1996) J Anal Appl Pyrolysis 37:185–197

    Article  CAS  Google Scholar 

  61. Ling H, Maiqian N, Chiavari G, Mazzeo R (2007) Microchem J 85:347–353

    Article  CAS  Google Scholar 

  62. Mills JS, White R (1994) The organic chemistry of museum objects. Butterworth-Heinemann, Oxford

    Google Scholar 

  63. Cappitelli F, Learner T, Chiantore O (2002) J Anal Appl Pyrolysis 63:339–348

    Article  CAS  Google Scholar 

  64. Scalarone D, Lazzari M, Chiantore O (2001) J Anal Appl Pyrolysis 58–59:503–512

    Article  Google Scholar 

  65. Colombini MP, Modugno F, Giacomelli M, Francesconi S (1999) J Chromatogr A 846:113–124

    Article  CAS  Google Scholar 

  66. Fjällström P, Andersson B, Nilsson C, Andersson K (2002) Ind Crops Prod 16:173–184

    Article  Google Scholar 

  67. Colombini MP, Modugno F, Menicagli E, Fuoco R, Giacomelli A (2000) Microchem J 67:291–300

    Article  CAS  Google Scholar 

  68. Colombini MP, Modugno F, Fuoco R, Tognazzi A (2002) Microchem J 73:175–185

    Article  CAS  Google Scholar 

  69. Colombini MP, Giachi G, Iozzo M, Ribechini E (2009) J Archaeol Sci 36:1488–1495

    Article  Google Scholar 

  70. Arantegui JP, Ribechini E, Cepriá G, Degano I, Colombini MP, Peralta JP, Palomar EO (2009) Trends Anal Chem 28:1019–1028

    Article  Google Scholar 

  71. Ribechini E, Modugno F, Baraldi C, Baraldi P, Colombini MP (2008) Talanta 74:555–561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Spanish I+D+I MICINN project CTQ2008-06727-C03-01 and 02/BQU supported by ERDEF funds as well as the Generalitat Valenciana I+D project ACOMP/2009/171 is gratefully acknowledged. The authors would like to thank Manuel Planes i Insausti and José Luis Moya, technical supervisors responsible for the Electron Microscopy Service of the Universitat Politécnica de València.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Doménech-Carbó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osete-Cortina, L., Doménech-Carbó, M.T., Doménech, A. et al. Multimethod analysis of Iranian Ilkhanate ceramics from the Takht-e Soleyman palace. Anal Bioanal Chem 397, 319–329 (2010). https://doi.org/10.1007/s00216-009-3413-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3413-5

Keywords

Navigation