Skip to main content
Log in

Determining biological noise via single cell analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Single cell analysis techniques describe the cellular heterogeneity that originates from fundamental stochastic variations in each of the molecular processes underlying cell function. The quantitative description of this set of variations is called biological noise and includes intrinsic and extrinsic noise. The former refers to stochastic variations directly involved with a given process, while the latter is due to environmental factors associated with other processes. Mathematical models are successful in predicting noise trends in simple biological systems, but it takes single cell techniques such as flow cytometry and time lapse microscopy to determine and dissect biological noise. This review describes several approaches that have been successfully used to describe biological noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B
Fig. 2A–B
Fig. 3A–B
Fig. 4A–D

Similar content being viewed by others

References

  1. Auffray C, Imbeaud S, Roux-Rouquie M, Hood L (2003) Philos Trans Royal Soc London Ser A 361:1125–1139

    Google Scholar 

  2. Blaabjerg O, Petersen PH, Horder M, Thygesen K, Feldtrasmussen U (1981) J Clin Chem Clin Biochem 19:617–617

    Google Scholar 

  3. Thattai M, van Oudenaarden A (2001) Proc Nat Acad Sci USA 98:8614–8619

    Article  CAS  Google Scholar 

  4. Arcibal IG, Santillo MF, Ewing AG (2007) Anal Bioanal Chem 387:51–57

    Article  CAS  Google Scholar 

  5. Huang WH, Ai F, Wang ZL, Cheng JK (2008) J Chromatogr B 866:104–122

    Google Scholar 

  6. Miyashiro T, Goulian M (2007) Single-cell analysis of gene expression by fluorescence microscopy. In: Simon MI, Crane BR, Crane A (2007) Two-component signaling systems, Pt B (Methods in Enzymology vol 423). Elsevier, Amsterdam, pp 458–475

  7. Meyer P, Dworkin J (2007) Res Microbiol 158:187–194

    Article  CAS  Google Scholar 

  8. Wodicka L, Dong HL, Mittmann M, Ho MH, Lockhart DJ (1997) Nat Biotechnol 15:1359–1367

    Article  CAS  Google Scholar 

  9. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Science 307:1962–1965

    Article  CAS  Google Scholar 

  10. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2007) Mol Syst Biol 3:143

    Article  Google Scholar 

  11. Struhl K (2007) Nat Struct Mol Biol 14:103–105

    Article  CAS  Google Scholar 

  12. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Science 297:1183–1186

    Article  CAS  Google Scholar 

  13. Casadaban MJ (1976) J Mol Biol 104:541–555

    Article  CAS  Google Scholar 

  14. Raser JM, O’Shea EK (2004) Science 304:1811–1814

    Article  CAS  Google Scholar 

  15. Ferrell JE, Machleder EM (1998) Science 280:895–898

    Article  CAS  Google Scholar 

  16. Bucy RP, Panoskaltsis-Mortari A, Huang GQ, Li J, Karr L, Ross M, Russell JH, Murphy KM, Weaver CT (1994) J Exp Med 180:1251–1262

    Article  CAS  Google Scholar 

  17. Kuchtey J, Fewtrell C (1996) J Cell Physiol 166:643–652

    Article  CAS  Google Scholar 

  18. Biggar SR, Crabtree GR (2001) Embo J 20:3167–3176

    Article  CAS  Google Scholar 

  19. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U (2004) Nat Genet 36:147–150

    Article  CAS  Google Scholar 

  20. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G, Alon U (2006) Mol Syst Biol 2:2006–2033

    Article  CAS  Google Scholar 

  21. Klevecz RR, Li CM, Marcus I, Frankel PH (2008) FEBS J 275:2372–2384

    Article  CAS  Google Scholar 

  22. Barkai N, Leibler S (2000) Nature 403:267–268

    CAS  Google Scholar 

  23. Zhou T, Chen L, Aihara K (2005) Phys Rev Lett 95:178103

    Article  CAS  Google Scholar 

  24. Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Nature 422:633–637

    Article  CAS  Google Scholar 

  25. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Nat Genet 31:69–73

    Article  CAS  Google Scholar 

  26. Becskei A, Kaufmann BB, van Oudenaarden A (2005) Nat Genet 37:937–944

    Article  CAS  Google Scholar 

  27. Berg OG, Paulsson J, Ehrenberg M (2000) Biophys J 79:2944–2953

    Article  CAS  Google Scholar 

  28. Cook DL, Gerber LN, Tapscott SJ (1998) Proc Nat Acad Sci USA 95:15641–15646

    Article  CAS  Google Scholar 

  29. Ko MSH (1991) J Theoret Biol 153:181–194

    Article  CAS  Google Scholar 

  30. Shapiro JA (1998) Ann Rev Microbiol 52:81–104

    Article  CAS  Google Scholar 

  31. Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS (2006) Nature 441:840–846

    Article  CAS  Google Scholar 

  32. Springer M, Paulsson J (2006) Nature 439:27–28

    Article  CAS  Google Scholar 

  33. Kuang Y, Biran I, Walt DR (2004) Anal Chem 76:6282–6286

    Article  CAS  Google Scholar 

  34. Dixon CJ, Bowler WB, Walsh CA, Gallagher JA (1997) Br J Pharmacol 120:777–780

    Article  CAS  Google Scholar 

  35. Huang L, Shen H, Atkinson MA, Kennedy RT (1995) Proc Natl Acad Sci USA 92:9608–9612

    Article  CAS  Google Scholar 

  36. Schuster KC, Urlaub E, Gapes JR (2000) J Microbiol Methods 42:29–38

    Article  CAS  Google Scholar 

  37. Hu S, Michels DA, Fazal MA, Ratisoontorn C, Cunningham ML, Dovichi NJ (2004) Anal Chem 76:4044–4049

    Article  CAS  Google Scholar 

  38. Johnson RD, Navratil M, Poe BG, Xiong G, Olson KJ, Ahmadzadeh H, Andreyev D, Duffy CF, Arriaga EA (2007) Anal Bioanal Chem 387:107–118

    Article  CAS  Google Scholar 

  39. Li L, Romanova EV, Rubakhin SS, Alexeeva V, Weiss KR, Vilim FS, Sweedler JV (2000) Anal Chem 72:3867–3874

    Article  CAS  Google Scholar 

  40. Kamme F, Salunga R, Yu J, Tran DT, Zhu J, Luo L, Bittner A, Guo HQ, Miller N, Wan J, Erlander M (2003) J Neurosci 23:3607–3615

    CAS  Google Scholar 

  41. Peixoto A, Monteiro M, Rocha B, Veiga-Fernandes H (2004) Genome Res 14:1938–1947

    Article  CAS  Google Scholar 

  42. Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) Science 298:1241–1245

    Article  CAS  Google Scholar 

  43. Santoro MG (2000) Biochem Pharmacol 59:55–63

    Article  CAS  Google Scholar 

  44. Alcedo J, Zou Y, Noll M (2000) Mol Cell 6:457–465

    Article  CAS  Google Scholar 

  45. Guttmann-Raviv N, Martin S, Kassir Y (2002) Mol Cell Biol 22:2047–2056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Carol Makkyla and Marian Navratil for their insightful comments and suggestions. Support is from NIH grant R01-AG20866 and a Fesler Lampert Chair, University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar A. Arriaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arriaga, E.A. Determining biological noise via single cell analysis. Anal Bioanal Chem 393, 73–80 (2009). https://doi.org/10.1007/s00216-008-2431-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2431-z

Keywords

Navigation