Skip to main content

Advertisement

Log in

Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 14 July 2013

Abstract

Square-wave anodic-stripping voltammetry (SWASV) was set up and optimized for simultaneous determination of cadmium, lead, and copper in siliceous spicules of marine sponges, directly in the hydrofluoric acid solution (∼0.55 mol L−1 HF, pH ∼1.9). A thin mercury-film electrode (TMFE) plated on to an HF-resistant epoxy-impregnated graphite rotating-disc support was used. The optimum experimental conditions, evaluated also in terms of the signal-to-noise ratio, were as follows: deposition potential −1100 mV vs. Ag/AgCl, KCl 3 mol L−1, deposition time 3–10 min, electrode rotation 3000 rpm, SW scan from −1100 mV to +100 mV, SW pulse amplitude 25 mV, frequency 100 Hz, ΔE step 8 mV, t step 100 ms, t wait 60 ms, t delay 2 ms, t meas 3 ms. Under these conditions the metal peak potentials were Cd −654 ± 1 mV, Pb −458 ± 1 mV, Cu −198 ± 1 mV. The electrochemical behaviour was reversible for Pb, quasi-reversible for Cd, and kinetically controlled (possibly following chemical reaction) for Cu. The linearity of the response with concentration was verified up to ∼4 μg L−1 for Cd and Pb and ∼20 μg L−1 for Cu. The detection limits were 5.8 ng L−1, 3.6 ng L−1, and 4.3 ng L−1 for Cd, Pb, and Cu, respectively, with t d = 5 min. The method was applied for determination of the metals in spicules of two specimens of marine sponges (Demosponges) from the Portofino natural reserve (Ligurian Sea, Italy, Petrosia ficiformis) and Terra Nova Bay (Ross Sea, Antarctica, Sphaerotylus antarcticus). The metal contents varied from tens of ng g−1 to ∼1 μg g−1, depending on the metal considered and with significant differences between the two sponge species.

Marine sponges Petrosia ficiformis and Sphaerotylus antarcticus analysed by voltammetry (Photos Carlo Cerrano)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Caroli S. Approaches and Means for Monitoring of Chemical Pollution: Environmental Indicators, Antarctic Environmental Specimen Bank and Certified Reference Materials. Programma Nazionale di Ricerche in Antartide (PNRA), Ministry of University and Research, Sector 9: Chemical contamination, Years 2004–2006, Rome (Italy)

  2. Muller WEG, Koziol C, Wiens M, Schroder HC (2000) Stress response in marine sponges: genes and molecules involved and their use as biomarkers. In: Storey KB, Storey JM (eds) Cell and Molecular Responses to Stress Vol. 1, Ch 14 (Environmental Stressors and Gene Responses). Elsevier Science, Amsterdam, pp 193–208

    Google Scholar 

  3. Butler PA, Andrén L, Bende GJ, Jermelöv JA, Reisch DJ (1971) Monitoring organisms. FAO Technical Conference on Marine Pollution and its Effects on Living Resources and Fishing, Suppl. 1: Methods of Detection, Measurement and Monitoring of Pollutants in the Marine Environment. Roma, 1970. FAO Fish Rep 99(S1):101–112

    Google Scholar 

  4. Bryan GW, Langston, WJ, Hummerstone LG (1980) The use of biological indicators of heavy metal contamination in estuaries. Marine Biological Association of the United Kingdom, Occasional Publication n. 1. The laboratory, Citadel Hill, Plymouth

  5. Phillips DJH (1980) Quantitative aquatic biological indicators: their use to monitor trace metal and organochlorine pollution. Applied Science Publishers, London

    Google Scholar 

  6. Phillips DJH, Rainbow PS (1993) Biomonitoring of trace aquatic contaminants. Applied Science Publishers, Barking

    Book  Google Scholar 

  7. Rainbow PS (1995) Mar Pollut Bull 31:183–192

    Article  CAS  Google Scholar 

  8. Battershill CN, Abraham R (1999) Sponges, indicators of marine environmental health. In: Memoirs of the Queensland Museum, 44:50

  9. Perez T (2000) Bull Soc Zool Fr 125:17–25

    CAS  Google Scholar 

  10. Carballo JL, Naranjo S (2002) Mar Pollut Bull 44:605–610

    Article  CAS  Google Scholar 

  11. Rao JV, Kavitha P, Reddy NC, Rao TG (2006) Chemosphere 65:634–638

    Article  CAS  Google Scholar 

  12. Cebrian E, Agell G, Marti R, Uriz MJ (2006) Environ Pollut 141:452–458

    Article  CAS  Google Scholar 

  13. Rao JV, Kavitha P, Srikanth K, Usman PK, Rao TG (2007) Toxicol Environ Chem 89:487–498

    Article  CAS  Google Scholar 

  14. Zahn RK, Zahn G, Mueller WEG, Kurelec B, Rijavec M, Batel R, Given R (1981) Sci Total Environ 20:147–169

    Article  CAS  Google Scholar 

  15. Patel B, Balani MC, Patel S (1985) Sci Total Environ 41:143–152

    Article  CAS  Google Scholar 

  16. Verdenal B, Arnoux CDA, Vacelet J (1985) Pollutant levels in Mediterranean commercial sponges. In: Rützler K (ed), New perspectives in sponge biology. 3rd Int. Conf. Biology of Sponges, Woods Hole, Massachusetts, 17–23 November. Smithsonian Institution Press, Washington, DC, 1990, pp 516–524

  17. Hansen IV, Weeks JM, Depledge MH (1995) Mar Pollut Bull 31:133–138

    Article  CAS  Google Scholar 

  18. Araujo MF, Cruz A, Humanes M, Lopes MT, Da Silva JA, Da Silva JJRF (1999) Chem Spec Bioavail 11:25–36

    Article  CAS  Google Scholar 

  19. Cebrian E, Martí R, Uriz JM, Turon X (2003) Mar Pollut Bull 46:1273–1284

    Article  CAS  Google Scholar 

  20. Perez T, Wafo E, Fourt M, Vacelet (2003) J Environ Sci Technol 37:2152–2158

    Article  CAS  Google Scholar 

  21. Perez T, Vacelet J, Rebouillon P (2004) In situ comparative study of several Mediterranean sponges as potential biomonitors for heavy metals. In: Pansini M, Pronzato R, Bavestrello G, Manconi R (eds), Sponge Science in the New Millennium, , Vol. 68. VI Int. Sponge Conf., Rapallo (Italy), 29 September - 5 October, 2002. Officine Grafiche Canessa, Rapallo, Genova (Italy), pp 517–525

  22. Perez T, Longet D, Schembri T, Rebouillon P, Vacelet J (2005) Mar Pollut Bull 50:301–309

    Article  CAS  Google Scholar 

  23. Berthet B, Mouneyrac C, Perez T, Amiard-Triquet C (2005) Comp Biochem Phys C 141C:306–313

    CAS  Google Scholar 

  24. Olesen TME, Weeks JM (1994) Bull Environ Contam Toxicol 52:722–728

    Article  CAS  Google Scholar 

  25. Webster NS, Negri AP, Wolff CW, Maclean WJ, Munro MHG, Battershill CN (2002) Human impacts and microbial ecology of Antarctic sponges. Boll Mus Ist Biol Univ Genova, VI Int. Sponge Conf., Rapallo (Italy), 29 September - 5 October 2002, Vol. 66–67. Officine Grafiche Canessa, Rapallo, Genova (Italy), Abstract, p. 209

  26. Vetter W, Janussen D (2004) Organohalogen Compd 66:394–399

    CAS  Google Scholar 

  27. Vetter W, Janussen D (2005) Environ Sci Technol 39:3889–3895

    Article  CAS  Google Scholar 

  28. Negri A, Burns K, Boyle S, Brinkman D, Webster N (2006) Environ Pollut 143:456–467

    Article  CAS  Google Scholar 

  29. Sandford F (2003) Microsc Res Tech 62:336–355

    Article  CAS  Google Scholar 

  30. Bond AM, O’Donnell TA (1969) Anal Chem 41:1801–1806

    Article  CAS  Google Scholar 

  31. Bond AM, O’Donnell TA, Taylor RJ (1972) Anal Chem 44:464–467

    Article  CAS  Google Scholar 

  32. Raaen HP (1962) Anal Chem 34:1714–1723

    Article  CAS  Google Scholar 

  33. Raaen HP (1964) Anal Chem 36:2420–2423

    Article  CAS  Google Scholar 

  34. Raaen HP (1965) Anal Chem 37:1355–1358

    Article  CAS  Google Scholar 

  35. Raaen HP (1965) Anal Chem 37:677–680

    Article  CAS  Google Scholar 

  36. Raaen HP (1969) Anal Chim Acta 44:205–210

    Article  CAS  Google Scholar 

  37. Raaen HP (1969) Anal Chim Acta 48:427–430

    Article  CAS  Google Scholar 

  38. Bond AM, O’Donnell TA, Waugh AB (1972) J Electroanal Chem 39:137–146

    Article  CAS  Google Scholar 

  39. Bond AM, O’Donnell TA (1972) Anal Chem 44:590–592

    Article  CAS  Google Scholar 

  40. Bond AM, O’Donnell TA, Taylor RJ (1974) Anal Chem 46:1063–1068

    Article  CAS  Google Scholar 

  41. Van der Linden WE, Dieker JW (1980) Anal Chim Acta 119:1–24

    Article  Google Scholar 

  42. Buldini PL, Toponi A, Zini Q (1988) Microchem J 38:241–245

    Article  CAS  Google Scholar 

  43. Weiss D, Shotyk W, Schaefer H, Loyall U, Grollimund E, Gloor M (1999) Fresenius J Anal Chem 363:300–305

    Article  CAS  Google Scholar 

  44. Anonimous (1980) Anal Chem 52:229A–230A

    Google Scholar 

  45. Borman SA (1982) Anal Chem 54:698–705

    Article  Google Scholar 

  46. Osteryoung J, Osteryoung RA (1985) Anal Chem 57:101A–110A

    Article  CAS  Google Scholar 

  47. Wechter C, Sleszynski N, O’Dea JJ, Osteryoung J (1985) Anal Chim Acta 175:45–53

    Article  CAS  Google Scholar 

  48. Osteryoung J, O’Dea J (1986) Square–wave voltammetry. In: Bard AJ (ed) Electroanalytical chemistry, Vol. 14. M Dekker, New York, pp 209–308

    Google Scholar 

  49. Penczek M, Stojek Z (1986) J Electroanal Chem 213:177–188

    Article  CAS  Google Scholar 

  50. Barker GC, Gardner AW (1992) Analyst 117:1811–1828

    Article  CAS  Google Scholar 

  51. Truzzi C, Lambertucci L, Gambini G, Scarponi G (2002) Ann Chim 92:313–326

    CAS  Google Scholar 

  52. Mirceski V, Komorsky-Lovric S, Lovric M (2007) Square-wave voltammetry, theory and application. In: Scholz F (ed) Monographs in electrochemistry. Springer, Berlin

    Google Scholar 

  53. Kounaves SP, O’Dea JJ, Chandresekhar P, Osteryoung (1987) J Anal Chem 59:386–389

    Article  CAS  Google Scholar 

  54. O’Dea JJ, Osteryoung J, Osteryoung RA (1981) Anal Chem 53:695–701

    Article  Google Scholar 

  55. Wang J (1985) Stripping Analysis. VHC Publishers, Deerfield Beach

    Google Scholar 

  56. Bavestrello G, Pansini M, Sarà M (1994) The variability and taxonomic status of different Petrosia-like sponges in the Mediterranean Sea. In: van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponges in time and space. Balkema, Rotterdam, pp 83–92

    Google Scholar 

  57. Koltun VM (1964) Sponges of the Antarctic. I. Tetraxonida and Cornacuspongida. Biol Rep Soviet Antarct Exped (1955–1958) 2, S. Monson, Jerusalem, pp. 6–133

  58. National Research Council of Canada DORM 1 Dogfish Muscle Certified Reference Material for Trace Metals. NRCC, Ottawa, Ontario, Canada, 1986

  59. MacKinnon MA (1988) Dermatol Clin 6:67–74

    Article  CAS  Google Scholar 

  60. Tremel H, Brunier A, Weilemann LS (1991) Med Klin 86:71–75

    CAS  Google Scholar 

  61. Bertolini JC (1992) J Emerg Med 10:163–168

    Article  CAS  Google Scholar 

  62. Ohtani M, Nishida N, Chiba T, Muto H, Yoshioka N (2007) Forensic Sci Int 167:49–52

    Article  Google Scholar 

  63. Peters D, Miethchen R (1996) J Fluorine Chem 79:161–165

    Article  CAS  Google Scholar 

  64. Boutron CF (1990) Fresenius J Anal Chem 337:482–491

    Article  CAS  Google Scholar 

  65. Candelone JP, Hong S, Boutron CF (1994) Anal Chim Acta 299:9–16

    Article  CAS  Google Scholar 

  66. Annibaldi A, Truzzi C, Illuminati S, Bassotti E, Scarponi G (2007) Anal Bioanal Chem 387:977–998

    Article  CAS  Google Scholar 

  67. Sturrock PE, Carter RJ (1975) CRC Crit Rev Anal Chem 5(2):201–223

    Article  CAS  Google Scholar 

  68. Mocak J, Bond AM, Mitchell S, Scollary G (1997) Pure Appl Chem 69:297–328

    Article  CAS  Google Scholar 

  69. Turner JA, Eisner U, Osteryoung RA (1977) Anal Chim Acta 90:25–34

    Article  CAS  Google Scholar 

  70. Zamponi S, Berrettoni M, Marassi R (1989) Anal Chim Acta 219:153–159

    Article  CAS  Google Scholar 

  71. Tercier ML, Buffle J, Graziottin F (1998) Electroanal 10:355–363

    Article  CAS  Google Scholar 

  72. Wikiel K, Osteryoung (1989) J Anal Chem 61:2086–2092

    Article  CAS  Google Scholar 

  73. Kounaves SP, Deng W (1991) J Electroanal Chem Inter Electrochem 306:111–124

    Article  CAS  Google Scholar 

  74. Burrows B, Jasinski R (1968) J Electrochem Soc 115:348–354

    Article  CAS  Google Scholar 

  75. Wechter C, Osteryoung J (1989) Anal Chem 61:2092–2097

    Article  CAS  Google Scholar 

  76. Kumar V, Heineman WR (1987) Anal Chem 59:842–846

    Article  CAS  Google Scholar 

  77. Kounaves SP, Deng W (1993) Anal Chem 65:375–379

    Article  CAS  Google Scholar 

  78. Capon RJ, Elsbury K, Butler MS, Lu CC, Hooper JNA, Rostas JAP, O’Brien KJ, Mudge L-M, Sim ATR (1993) Experientia 49:263–264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Italian Programma Nazionale di Ricerche in Antartide under the project “Chemical Contamination” is gratefully acknowledged. The authors are grateful to Professor G. Bavestrello for spongiological advice and for stimulating discussion. Many thanks are due to the technical personnel of ENEA (Ente Nazionale Energia e Ambiente) at Terra Nova Bay, and to the scientists of the 2005–2006 expedition (especially Stefano Schiaparelli) for the sampling activities performed on-site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Truzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truzzi, C., Annibaldi, A., Illuminati, S. et al. Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica). Anal Bioanal Chem 392, 247–262 (2008). https://doi.org/10.1007/s00216-008-2239-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2239-x

Keywords

Navigation