Skip to main content
Log in

Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Eight PM10 aerosol samples were collected in the vicinity of the “Mario Zucchelli” Italian Antarctic Station (formerly Terra Nova Bay Station) during the 2000–2001 austral summer using a high-volume sampler and precleaned cellulose filters. The aerosol mass was determined by differential weighing of filters carried out in a clean chemistry laboratory under controlled temperature and humidity. A two-step sequential extraction procedure was used to separate the water-soluble and the insoluble (dilute-HCl-extractable) fractions. Cd, Pb and Cu were determined in the two fractions using an ultrasensitive square wave anodic stripping voltammetric (SWASV) procedure set up for and applied to aerosol samples for the first time. Total extractable metals showed maxima at midsummer for Cd and Pb and a less clear trend for Cu. In particular, particulate metal concentrations ranged as follows: Cd 0.84–9.2 μg g−1 (average 4.7 μg g−1), Pb 13.2–81 μg g−1 (average 33 μg g−1), Cu 126–628 μg g−1 (average 378 μg g−1). In terms of atmospheric concentration, the values were: Cd 0.55–6.3 pg m−3 (average 3.4 pg m−3), Pb 8.7–48 pg m−3 (average 24 pg m−3), Cu 75–365 pg m−3 (average 266 pg m−3). At the beginning of the season the three metals appear widely distributed in the insoluble (HCl-extractable) fraction (higher proportions for Cd and Pb, 90–100%, and lower for Cu, 70–90%) with maxima in the second half of December. The soluble fraction then increases, and at the end of the season Cd and Pb are approximately equidistributed between the two fractions, while for Cu the soluble fraction reaches its maximum level of 36%. Practically negligible contributions are estimated for crustal and sea-spray sources. Low but significant volcanic contributions are estimated for Cd and Pb (∼10% and ∼5%, respectively), while there is an evident although not quantified marine biogenic source, at least for Cd. The estimated natural contributions (possibly including the marine biogenic source) cannot account for the high fractions of the metal contents, particularly for Pb and Cu, and this suggests that pollution from long-range transport is the dominant source.

Aerosol sampling in Antarctica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York, USA

    Google Scholar 

  2. Prospero JM, Charlson RJ, Mohnen V, Jaenicke R, Delany AC, Moyers J, Zoller W, Rahn K (1983) Rev Geophys Space Phys 21:1607–1629

    CAS  Google Scholar 

  3. Nriagu JO (1989) Nature 338:47–49

    Article  CAS  Google Scholar 

  4. Pilinis C, Pandis SN (1995) Physical, chemical and optical properties of atmospheric aerosols. In: Koumitzis T, Samara C (eds) The handbook of environmental chemistry, vol 4. Springer, Berlin Heidelberg New York, pp 99–124

    Google Scholar 

  5. Li X, Maring H, Savoie D, Voss K, Prospero JM (1996) Nature 380:416–419

    Article  CAS  Google Scholar 

  6. Andreae MO, Crutzen PJ (1997) Science 276:1052–1058

    Article  CAS  Google Scholar 

  7. Mészáros E (1999) Fundamentals of atmospheric aerosol chemistry. Akadémiai Kiadò, Budapest

    Google Scholar 

  8. Ure AM, Davidson CM (2001) Chemical speciation in the environment. Blackie, Glasgow

    Google Scholar 

  9. Vincent JH (1994) Analyst 119:13–18

    Article  CAS  Google Scholar 

  10. Vincent JH (1994) Analyst 119:19–25

    Article  CAS  Google Scholar 

  11. Wilson WE, Suh HH (1997) J Air Waste Manage Assoc 47:1238–1249

    CAS  Google Scholar 

  12. Filgueiras AV, Lavilla I, Bendicho C (2002) J Environ Monit 4:823–857

    Article  CAS  Google Scholar 

  13. Smichowski P, Polla G, Gómez D (2005) Anal Bioanal Chem 381:302–316

    Article  CAS  Google Scholar 

  14. Templeton DM, Ariese F, Cornelis R, Danielsson L-G, Muntau H, Van Leeuwen HP, Lobinski R (2000) Pure Appl Chem 72:1453–1470

    CAS  Google Scholar 

  15. Wolff EW, Bales RC (eds) (1996) Chemical exchange between the atmosphere and polar snow. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Legrand M, Mayewski P (1997) Rev Geophys 35:219–243

    Article  CAS  Google Scholar 

  17. Pye K (1987) Aeolian dust and dust deposits. Academic, San Diego, CA

    Google Scholar 

  18. Shaw GE (1989) Aerosol transport from sources to ice sheets. In: Oeschger H, Langway CC (eds) The environmental record in glaciers and ice sheets. Wiley, New York, pp 2251–2257

    Google Scholar 

  19. Hammer CU, Clausen HB, Dansgaard W, Neftel A, Kristinsdottir PM, Johnson E (1985) Continuous impurity analysis along the Dye 3 deep core. In: Langway CCJ, Oeschger H, Dansgaard W (eds) Greenland ice core: geophysics, geochemistry, and the environment (Geophys Monogr Ser vol 33). AGU, Washington, DC, pp 90–94

    Google Scholar 

  20. Royer A, De Angelis M, Petit JR (1983) Clim Change 5:381–412

    Google Scholar 

  21. Maggi V (1997) J Geophys Res—Oceans 102:26725–26734

    Article  CAS  Google Scholar 

  22. Laj P, Ghermandi G, Cecchi R, Maggi V, Riontino C, Hong S, Candelone JP, Boutron C (1997) J Geophys Res 102:26615–26623

    Article  CAS  Google Scholar 

  23. Marino F, Ghermandi G, Maggi V (2003) Terra Antartica Reports 8:95–100

    Google Scholar 

  24. Fuhrer K, Neftel A, Anklin M, Maggi V (1993) Atmos Environ A Gen 27A:1873–1880

    CAS  Google Scholar 

  25. Mayewski PA, Meeker LD, Whitlow S, Twickler MS, Morrison MC, Bloomfield P, Bond GC, Alley RB, Gow AJ, Grootes PM, Meese DA, Ram M, Taylor KC, Wumkes W (1994) Science 263:1747–1751

    Article  CAS  Google Scholar 

  26. De Angelis M, Barkov NI, Petrov VN (1987) Nature 325:318–321

    Article  Google Scholar 

  27. Petit JR, Mounier L, Jouzel J, Korotkevich YS, Kotlyakov VI, Lorius C (1990) Nature 343:56–58

    Article  Google Scholar 

  28. Colin JL, Jaffrezo JL, Gros JM (1990) Atmos Environ A Gen 24A:537–544

    CAS  Google Scholar 

  29. Losno R, Colin JL, Le Bris N, Bergametti G, Lim B, Jickells TD (1993) J Atmos Chem 17:29–43

    Article  CAS  Google Scholar 

  30. Tessier A, Campbell PGC, Bisson M (1979) Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  31. Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Int J Environ Anal Chem 51:135–151

    CAS  Google Scholar 

  32. Chester R, Lin FJ, Murphy KJT (1989) Environ Technol Lett 10:887–900

    CAS  Google Scholar 

  33. Zatka VJ, Warner JS, Maskery D (1992) Environ Sci Technol 26:138–144

    Article  CAS  Google Scholar 

  34. Fernández-Espinosa AJ, Ternero-Rodríguez M (2004) Anal Bioanal Chem 379:684–699

    Article  CAS  Google Scholar 

  35. Heal MR, Hibbs LR, Agius RM, Beverland IJ (2005) Atmos Environ 39:1417–1430

    Article  CAS  Google Scholar 

  36. Kyotani T, Iwatsuki M (1998) Anal Sci 14:741–748

    Article  CAS  Google Scholar 

  37. Kyotani T, Iwatsuki M (2002) Atmos Environ 36:639–649

    Article  CAS  Google Scholar 

  38. Profumo A, Spini G, Cucca L, Pesavento M (2002) Talanta 57:929–934

    Article  CAS  Google Scholar 

  39. Zoller WH, Gladney ES, Duce RA (1974) Science 183:198–200

    Article  CAS  Google Scholar 

  40. Maenhaut W, Zoller WH, Duce RA, Hoffman GL (1979) J Geophys Res 84:2421–2431

    CAS  Google Scholar 

  41. Cunningham WC, Zoller WH (1981) J Aerosol Sci 12:367–384

    Article  CAS  Google Scholar 

  42. Tuncel G, Aras NK, Zoller WH (1989) J Geophys Res—Atmos 94:13025–13038

    CAS  Google Scholar 

  43. Peel DA, Wolff EW (1982) Ann Glaciol 3:255–259

    CAS  Google Scholar 

  44. Dick AL, Peel DA (1985) Ann Glaciol 7:12–19

    CAS  Google Scholar 

  45. Wagenbach D, Görlach U, Moser K, Münnich KO (1988) Tellus B 40B:426–436

    Article  CAS  Google Scholar 

  46. Dick AL (1991) Geochim Cosmochim Acta 55:1827–1836

    Article  CAS  Google Scholar 

  47. Artaxo P, Rabello MLC, Maenhaut W, van Grieken R (1992) Tellus B 44B:318–334

    Article  CAS  Google Scholar 

  48. Völkening J, Baumann H, Heumann KG (1988) Atmos Environ 22:1169–1174

    Article  Google Scholar 

  49. Völkening J, Heumann KG (1990) J Geophys Res—Atmos 95:20623–20632

    Google Scholar 

  50. Rädlein N, Heumann KG (1992) Int J Environ Anal Chem 48:127–150

    Google Scholar 

  51. Heumann KG (1993) Anal Chim Acta 283:230–245

    Article  CAS  Google Scholar 

  52. Rädlein N, Heumann KG (1995) Fresenius J Anal Chem 352:748–755

    Article  Google Scholar 

  53. Mazzera DM, Lowenthal DH, Chow JC, Watson JG, Grubisic V (2001) Atmos Environ 35:1891–1902

    Article  CAS  Google Scholar 

  54. Mishra VK, Kim KH, Hong S, Lee K (2004) Atmos Environ 38:4069–4084

    Article  CAS  Google Scholar 

  55. Toscano G, Gambaro A, Moret I, Capodaglio G, Turetta C, Cescon P (2005) J Environ Monit 7:1275–1280

    Article  CAS  Google Scholar 

  56. Röhrl A, Lammel G (2001) Environ Sci Technol 35:95–101

    Article  CAS  Google Scholar 

  57. Truzzi C, Lambertucci L, Illuminati S, Annibaldi A, Scarponi G (2005) Ann Chim 95:867–876

    Article  CAS  Google Scholar 

  58. Truzzi C, Lambertucci L, Gambini G, Scarponi G (2002) Ann Chim 92:313–326

    CAS  Google Scholar 

  59. European Union (1996) Council Directive 96/62/EC of 27 Sept. 1996 on ambient air quality assessment and management. Off J Eur Commun L296:55–63

  60. European Union (1999) Council Directive 1999/30/EC of 22 Apr. 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Off J Eur Commun L163:41–60

    Google Scholar 

  61. CEN (1998) EN 12341:1998. Air quality—determination of the PM10 fraction of suspended particulate matter. Reference method and field test procedure to demonstrate reference equivalence of measurements methods. European Committee for Standardization (CEN), Brussels

  62. Baroni C, Frezzotti M, Salvatore MC, Meneghel M, Tabacco IE, Vittuari L, Bondensan A, Biasini A, Cimbelli A, Orombelli G (2004) Ann Glaciol 39:256–264

    Google Scholar 

  63. Harrison RM, Tilling R, Callen Romero MS, Harrad S, Jarvis K (2003) Atmos Environ 37:2391–2402

    Article  CAS  Google Scholar 

  64. Buccolieri A, Buccolieri G, Cardellicchio N, Dell’Atti A, Florio ET (2005) Ann Chim 95:15–25

    Article  CAS  Google Scholar 

  65. Jalkanen LM, Häsänen EK (1996) J Anal Atom Spectrom 11:365–369

    Article  CAS  Google Scholar 

  66. Hlavay J, Polyák K, Weisz M (2001) J Environ Monit 3:74–80

    Article  CAS  Google Scholar 

  67. Bikkes M, Polyák K, Hlavay J (2001) J Anal Atom Spectrom 16:74–81

    Article  CAS  Google Scholar 

  68. Chester R, Nimmo M, Fones GR, Keyse S, Zhang Z (2000) Atmos Environ 34:949–958

    Article  CAS  Google Scholar 

  69. Migliori A, Becagli S, Benassai S, Fattori I, Traversi R, Udisti R (2002) Comparison between aerosol chemical composition at Terra Nova Bay and Dome C (Antarctica): preliminary results. In: Colacino M (ed) Conf Proc Italian Research on Antarctic Atmosphere. Italian Physical Society, Bologna, Italy, 80:239–252

  70. Wedepohl KH (1995) Geochim Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  71. Millero FJ (1996) Chemical oceanography, 2nd edn. CRC, Boca Raton, FL, p 66

    Google Scholar 

  72. Minikin A, Legrand M, Hall J, Wagenbach D, Kleefeld C, Wolff E, Pasteur EC, Ducroz F (1998) J Geophys Res—Atmos 103:10975–10990

    Article  CAS  Google Scholar 

  73. Jourdain B, Legrand M (2002) J Geophys Res—Atmos 107:ACH20-1–ACH20-13

    Article  CAS  Google Scholar 

  74. Hinkley TK, Lamothe PJ, Wilson SA, Finnegan DL, Gerlach TM (1999) Earth Planet Sci Lett 170:315–325

    Article  CAS  Google Scholar 

  75. Lambert G, Le Cloarec MF, Pennisi M (1988) Geochim Cosmochim Acta 52:39–42

    Article  CAS  Google Scholar 

  76. Boutron CF, Patterson CC (1986) Nature 323:222–225

    Article  CAS  Google Scholar 

  77. Zehnder A, Zinder S (1980) The sulfur cycle. In: Hutzinger O (ed) The handbook of environmental chemistry, vol 1, Pt A. Springer, Berlin Heidelberg New York, pp 104–145

    Google Scholar 

  78. Charlson RJ, Anderson TL, McDuff RE (1992) The sulfur cycle. In: Butcher SS, Charlson RJ, Orians GH, Wolfe GV (eds) Global biogeochemical cycles. Academic, London, Ch 13, pp 285–300

  79. Penner JE, Andreae M, Annegarn H, Barrie J, Feichter J, Hegg D, Jayaraman A, Leaitch R, Murphy D, Nganga J, Pitari G (2001) Aerosols, their direct and indirect effects. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, Ch 5, pp 289–348

  80. Hong S, Kim Y, Boutron CF, Ferrari CP, Petit JR, Barbante C, Rosman K, Lipenkov VY (2003) Geophys Res Lett 30:ASC 3-1–ASC 3-5

    Article  CAS  Google Scholar 

  81. Stevenson DS, Johnson CE, Collins WJ, Derwent RG (2003) The tropospheric sulphur cycle and the role of volcanic SO2. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing (Spec Publ 213). Geological Society, London, pp 295–305

    Google Scholar 

  82. Hong S, Boutron CF, Gabrielli P, Barbante C, Ferrari CP, Petit JR, Lee K, Lipenkov VY (2004) Geophys Res Lett 31:L20111-1–L20111-4

    Google Scholar 

  83. Corami F, Capodaglio G, Turetta C, Soggia F, Magi E, Grotti M (2005) J Environ Monit 7:1256–1264

    Article  CAS  Google Scholar 

  84. Weisel CP, Duce RA, Fasching JL, Heaton RW (1984) J Geophys Res—Atmos 89:11607–11618

    CAS  Google Scholar 

  85. Duce RA, Hoffmann GL, Ray BJ, Fletcher IS, Wallace GT, Fasching JL, Piotrowicz SR, Walsh PR, Hoffman EJ, Miller JM, Heffter JL (1976) Trace metals in the marine atmosphere: sources and fluxes. In: Windon H, Duce RA (eds) Marine pollutant transfer. DC Health, Lexington, MA, Ch 4, pp 77–119

  86. Chester R, Murphy KJT (1986) Sci Total Environ 49:325–338

    Article  CAS  Google Scholar 

  87. Hunter KA (1997) Chemistry of the sea-surface microlayer. In: Liss PS, Duce RA (eds) Sea surface and global change. Cambridge University Press, London, pp 287–319

    Google Scholar 

  88. Arimoto R, Duce RA, Ray BJ, Hewitt AD, Williams J (1987) J Geophys Res—Atmos 92:8465–8479

    Article  CAS  Google Scholar 

  89. Planchon FAM, Boutron CF, Barbante C, Cozzi G, Gaspari V, Wolff EW, Ferrari CP, Cescon P (2002) Earth Planet Sci Lett 200:207–222

    Article  CAS  Google Scholar 

  90. Planchon FAM, Boutron CF, Barbante C, Cozzi G, Gaspari V, Wolff EW, Ferrari CP, Cescon P (2002) Sci Total Environ 300:129–142

    Article  CAS  Google Scholar 

  91. Pongratz R, Heumann KG (1996) Anal Chem 68:1262–1266

    Article  CAS  Google Scholar 

  92. Pongratz R, Heumann KG (1998) Chemosphere 36:1935–1946

    Article  CAS  Google Scholar 

  93. Pongratz R, Heumann KG (1999) Chemosphere 39:89–102

    Article  CAS  Google Scholar 

  94. Zreda-Gostynska G, Kyle PR, Finnegan D, Prestbo KM (1997) J Geophys Res—Sol Ea 102:15039–15055

    Article  CAS  Google Scholar 

  95. Vallelonga P, Barbante C, Cozzi G, Gaspari V, Candelone JP, Van de Velde K, Morgan VI, Rosman KJR, Boutron CF, Cescon P (2004) Ann Glaciol 39:169–174

    CAS  Google Scholar 

  96. Vallelonga P, van de Velde K, Candelone JP, Morgan VI, Boutron CF, Rosman KJR (2002) Earth Planet Sci Lett 204:291–306

    Article  CAS  Google Scholar 

  97. Wolff EW, Suttie ED (1994) Geophys Res Lett 21:781–784

    Article  Google Scholar 

  98. Wolff EW, Suttie ED, Peel DA (1999) Atmos Environ 33:1535–1541

    Article  CAS  Google Scholar 

  99. Barbante C, Turetta C, Capodaglio G, Scarponi G (1997) Int J Environ Anal Chem 68:457–477

    CAS  Google Scholar 

  100. Barbante C, Turetta C, Gambaro A, Capodaglio G, Scarponi G (1998) Ann Glaciol 27:674–678

    CAS  Google Scholar 

  101. Scarponi G, Barbante C, Turetta C, Gambaro A, Cescon P (1997) Microchem J 55:24–32

    Article  CAS  Google Scholar 

  102. Planchon FAM, van de Velde K, Rosman KJR, Wolff EW, Ferrari CP, Boutron C (2003) Geochim Cosmochim Acta 67:693–708

    Article  CAS  Google Scholar 

  103. van de Velde K, Vallelonga P, Candelone JP, Rosman KJR, Gaspari V, Cozzi G, Barbante C, Udisti R, Cescon P, Boutron CF (2005) Earth Planet Sci Lett 232:95–108

    Article  CAS  Google Scholar 

  104. Chiavarini S, Galletti M, Michetti I, Perini A, Testa L (1994) Int J Environ Anal Chem 55:331–340

    CAS  Google Scholar 

  105. Anon (2002) Information paper: IP-068 (submitted by Italy), agenda item: CEP 5. In: XXV ATCM, 10–20 Sept 2002, Warsaw, Poland, http://www.ats.aq/25atcm/25atcmIP.htm

  106. Skoog DA, West DM, Holler FJ, Crouch SR (2000) Analytical chemistry: an introduction. Harcourt College, Fort Worth, TX

    Google Scholar 

  107. Rubinson KA, Rubinson JF (2000) Contemporary instrumental analysis. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

Download references

Acknowledgements

Financial support from the Italian Programma Nazionale di Ricerche in Antartide under the projects of “Chemical Contamination”, “Physics and Chemistry of the Atmosphere” and “Glaciology” is gratefully acknowledged. Many thanks are due to the technical personnel of ENEA (Ente Nazionale Energia e Ambiente) at Terra Nova Bay, and to the scientists of the 2000–2001 expedition for the sampling activities performed on-site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Annibaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annibaldi, A., Truzzi, C., Illuminati, S. et al. Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land). Anal Bioanal Chem 387, 977–998 (2007). https://doi.org/10.1007/s00216-006-0994-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0994-0

Keywords

Navigation