Skip to main content
Log in

Directing energy flow through quantum dots: towards nanoscale sensing

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoscale sensors can be created when an expected energetic pathway is created and then that pathway is either initiated or disrupted by a specific binding event. Constructing the sensor on the nanoscale could lead to greater sensitivity and lower limits of detection. To this end, quantum dots (QDs) can be considered prime candidates for the active components. Relative to organic chromophores, QDs have tunable spectral properties, show less susceptibility to photobleaching, have similar brightness, and have been shown to display electro-optical properties. In this review, we discuss recent articles that incorporate QDs into directed energy flow systems, some with the goal of building new and more powerful sensors and others that could lead to more powerful sensors.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–b
Fig. 3

Similar content being viewed by others

References

  1. Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Phys Rev Lett 76:1517–1520

    Google Scholar 

  2. Crooker SA, Hollingsworth JA, Tretiak S, Klimov VI (2002) Phys Rev Lett 89:186802

    Google Scholar 

  3. Franzl T, Shavel A, Rogach AL, Gaponik N, Klar TA, Eychmueller A, Feldmann J (2005) Small 1:392–395

    Google Scholar 

  4. Westenhoff S, Kotov NA (2002) J Am Chem Soc 124:2448–2449

    Google Scholar 

  5. Tang ZY, Ozturk B, Wang Y, Kotov NA (2004) J Phys Chem B 108:6927–6931

    Google Scholar 

  6. Biju V, Makita Y, Sonoda A, Yokoyama H, Baba Y, Ishikawa M (2005) J Phys Chem B 109:13899–13905

    Google Scholar 

  7. Unold T, Mueller K, Lienau C, Elsaesser T, Wieck AD (2005) Phys Rev Lett 94:137404

    Article  Google Scholar 

  8. Grecco HE, Lidke KA, Heintzmann R, Lidke DS, Spagnuolo C, Martinez OE, Jares-Erijman EA, Jovin TM (2004) Microsc Res Technique 65:169–179

    Google Scholar 

  9. Willard DM, Van Orden A (2003) Nature Mat 2:575–576

    Google Scholar 

  10. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nature Mat 4:435–446

    Google Scholar 

  11. Wargnier R, Baranov AV, Maslov VG, Stsiapura V, Artemyev M, Pluot M, Sukhanova A, Nabiev I (2004) Nano Lett 4:451–457

    Google Scholar 

  12. Basko DM, Bassani F, La Rocca GC (2000) Eur Phys J B 13:653–659

    Article  CAS  Google Scholar 

  13. Willard DM, Carillo LL, Jung J, Van Orden A (2001) Nano Lett 1:469–474

    Google Scholar 

  14. Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I (2003) J Am Chem Soc 125:13918–13919

    Article  CAS  Google Scholar 

  15. Kim JH, Morikis D, Ozkan M (2004) Sensor Actuat B 102:315–319

    Google Scholar 

  16. Kloepfer JA, Cohen N, Nadeau JL (2004) J Phys Chem B 108:17042–17049

    Article  CAS  Google Scholar 

  17. Hohng S, Ha T (2005) ChemPhysChem 6:956–960

  18. Goldman E, Anderson G, Tran P, Mattoussi H, Charles P, Mauro J (2002) Anal Chem 74:841–847

    Article  CAS  Google Scholar 

  19. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP (2002) J Am Chem Soc 124:6378–6382

    Article  CAS  Google Scholar 

  20. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nature Mat 2:630–638

    Google Scholar 

  21. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) J Am Chem Soc 126:301–310

    Google Scholar 

  22. Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H (2005) J Am Chem Soc 127:6744–6751

    Article  CAS  Google Scholar 

  23. Mueller F, Goetzinger S, Gaponik N, Weller H, Mlynek J, Benson O (2004) J Phys Chem B 108:14527–14534

    Article  CAS  Google Scholar 

  24. Ebenstein Y, Mokari T, Banin U (2004) J Phys Chem B 108:93–99

    Article  CAS  Google Scholar 

  25. Shubeita GT, Sekatskii SK, Dietler G, Potapova I, Mews A, Basche T (2003) J Microsc 210:274–278

    Google Scholar 

  26. Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H (2005) J Am Chem Soc 127:1242–1250

    Article  CAS  Google Scholar 

  27. Achermann M, Petruska MA, Kos S, Smith DL, Koleske DD, Klimov VI (2004) Nature 429:642–646

    Article  CAS  Google Scholar 

  28. Anni M, Manna L, Cingolani R, Valerini D, Cretí A, Lomascolo M (2004) App Phys Lett 85:4169–4171

    Article  CAS  Google Scholar 

  29. Kim JY, Osterich FE (2005) J Am Chem Soc 127:10152–10153

    Article  CAS  Google Scholar 

  30. Gryczinski I, Malicka J, Jiang W, Fischer H, Chan W, Gryczinski Z, Grudzinski W, Lakowicz J (2005) J Phys Chem B 109:1088–1093

    Google Scholar 

  31. Gryczinski I, Malicka J, Gryczinski Z, Lakowicz JR (2004) J Phys Chem B 108:12568–12574

    Google Scholar 

  32. Malicka JG, Gryczinski I, Gryczinski Z, Lakowicz JR (2004) J Biomol Screen 9:208–215

    Google Scholar 

  33. Gryczinski I, Malicka J, Gryczinski Z, Lakowicz J (2004) Anal Biochem 324:170–182

    Google Scholar 

  34. Lakowicz J (2004) Anal Biochem 324:153–169

    Article  CAS  Google Scholar 

  35. Matveeva E, Malicka J, Gryczinsk I, Gryczinski Z, Lakowicz J (2004) Biochem Biophys Res Commun 313:721–726

    Google Scholar 

  36. Colvin VL, Schlamp MC, Alivisatos AP (1994) Nature 370:354–357

    Google Scholar 

  37. Tessler N, Medvedev V, Kazes M, Kan SH, Banin U (2002) Science 295:1506–1508

    Google Scholar 

  38. Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Appl Phys Lett 66:1316–1318

    Google Scholar 

  39. Ginger DS, Greenham NC (1999) Phys Rev B 59:10622–10629

    Google Scholar 

  40. McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Nature Mat 4:138–142

    Google Scholar 

  41. McDonald SA, Cyr PW, Levina L, Sargent EH (2004) Appl Phys Lett 85:2089–2091

    Google Scholar 

  42. Heeger AJ (2001) J Phys Chem B 105:8475–8491

    Article  CAS  Google Scholar 

  43. Halls JJM, Walsh AA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holms AB (1995) Nature 376:498–500

    Google Scholar 

  44. Tessler ND, Denton GJ, Friend RH (1996) Nature 382:695–697

    Google Scholar 

  45. Hide F, Diaz-Garcia MA, Schwartz BJ, Andersson MR, Pei QB, Heeger AJ (1996) Science 273:1833–1836

    Google Scholar 

  46. Gross M, Muller DC, Nothofer H-G, Scherf U, Neher D, Brauchle C, Meerholz K (2000) Nature 405:661–665

    Google Scholar 

  47. Granstrom MP, Petritsh K, Arias AC, Lux A, Andersson MR, Friend RH (1998) Nature 395:257–260

    Google Scholar 

  48. Yang YS, Swager TM (1998) J Am Chem Soc 120:11864–11873

    Google Scholar 

  49. Bakueva L, Konstantatos G, Levina L, Musikhin S, Sargent EH (2004) Appl Phys Lett 84:3459–3461

    Google Scholar 

  50. Bakueva L, Musikhin S, Hines MA, Chang T-WF, Tzolov M, Scholes GD, Sargent EH (2003) Appl Phys Lett 82:2895–2897

    Google Scholar 

  51. Su M, Aslam M, Fu L, Wu N, Dravid VP (2004) Appl Phys Lett 84:4200–4202

    Google Scholar 

  52. Suh KY, Seong J, Khademhosseini A, Laibins P, Langer R (2004) Biomaterials 25:557–563

    Google Scholar 

  53. Bakueva, L, Musikhin S, Sargent EH, Ruda HE, Shik A (2003) In: Handbook of organic-inorganic hybrid materials and nanocomposites, vol 2. American Scientific, Valencia, CA, pp 181–215

  54. Chang T-WF, Musikhin S, Bakueva L, Levina L, Hines MA, Cyr PW, Sargent EH (2004) Appl Phys Lett 84:4295–4297

    Google Scholar 

  55. Warner JH, Watt AR, Thomsen E, Heckenberg N, Meredith P, Rubinsztein-Dunlop H (2005) J Phys Chem B 109:9001–9005

    Google Scholar 

  56. Greenham NC, Peng XG, Alivisatos AP (1996) Phys Rev B 54:17628–17637

    Google Scholar 

  57. Sargent EH (2005) Adv Mater 17:515–522

    Article  CAS  Google Scholar 

  58. Hong S-K (2005) Physica E 28:66–75

    Article  CAS  Google Scholar 

  59. Javier A, Yun CS, Sorena J, Strouse GF (2003) J Phys Chem B 107:435–442

    Google Scholar 

  60. Huynh WU, Peng XG, Alivisatos AP (1999) Adv Mater 11:923–927

    Article  CAS  Google Scholar 

  61. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425–2427

    Article  CAS  Google Scholar 

  62. Skaff H, Sill K, Emrick T (2004) J Am Chem Soc 126:11322–11325

    Google Scholar 

  63. Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2005) J Am Chem Soc 127:496–497

    Google Scholar 

  64. Hohng S, Ha T (2004) J Am Chem Soc 126:1324–1325

    Google Scholar 

  65. Aldana J, Wang YA, Peng X (2001) J Am Chem Soc 123:8844–8850

    Google Scholar 

  66. Jeong S, Achermann M, Nanda J, Ivanov S, Klimov VI, Hollingsworth JA (2005) J Am Chem Soc 127:10126–10127

    Google Scholar 

  67. Kloepfer JA, Bradforth SE, Nadeau JL (2005) J Phys Chem B 109:9996-10003

    Google Scholar 

  68. Potapova I, Mruk R, Prehl S, Zentel R, Basche T, Mews A (2003) J Am Chem Soc 125:320–321

    Google Scholar 

  69. Schmelz O, Mews A, Basche T, Herrmann A, Mullen K (2001) Langmuir 17:2861–2865

    Google Scholar 

  70. Ji X, Zheng J, Xu J, Rastogi VK, Cheng T-C, DeFrank JJ, Leblanc RM (2005) J Phys Chem B 109:3793–3799

    Article  CAS  Google Scholar 

  71. Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2004) J Am Chem Soc 126:30–31

    Article  CAS  Google Scholar 

  72. Shen Y, Swiatkiewicz J, Lin TC, Markovicz P, Prasad PN (2002) J Phys Chem B 106:4040–4042

    Google Scholar 

  73. Gryczinski I, Malicka J, Shen Y, Gryzinski Z, Lakowicz J (2002) J Phys Chem B 106:2191–2195

    Google Scholar 

  74. Ditlbacher H, Felidj N, Krenn JR, Lamprecht B, Leitner A, Ausseneg FR (2001) Appl Phys B 73:373–377

    Google Scholar 

  75. Shimizu KT, Woo WK, Fisher BR, Eisler HJ, Bawendi MG (2002) Phys Rev Lett 89:117401

    Google Scholar 

  76. Gersten JN, Nitzan A (1980) J Chem Phys 73:3023–3037

    Google Scholar 

  77. Glass AM, Liao PF, Bergmann JG, Olson DH (1980) Opt Lett 5:368–370

    Google Scholar 

  78. Moskovits M (1985) Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  79. Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Nano Lett 2:1449–1452

    Google Scholar 

  80. Chang RK, Furtak TE (1982) Surface enhanced raman scattering. Plenum, New York

  81. Nikoobakht B, Burda C, Braun M, Hun M, El-Sayed M (2002) Photochem Photobiol 75:591–597

    Google Scholar 

  82. Lee J, Govorov AO, Dulka J, Kotov NA (2004) Nano Lett 4:2323–2330

    Google Scholar 

  83. Wargnier R, Baranov AV, Maslov VG, Stsiapura V, Artemyev M, Pluot M, Nabiev I (2004) Nano Lett 4:451–457

    Google Scholar 

  84. Gueroui ZL, Libchaber A (2004) Phys Rev Lett 93:166108

    Google Scholar 

  85. Oh E, Hong M-Y, Lee D, Nam S-H, Yoon HC, Kim H-S (2005) J Am Chem Soc 127:3270–3271

    Google Scholar 

  86. Wang CJ, Shim M, Guyot-Sionnest P (2001) Science 291:2390–2392

    Google Scholar 

  87. Wang CJ, Shim M, Guyot-Sionnest P (2002) Appl Phys Lett 80:4–6

    Google Scholar 

  88. Poznyak SK, Talapin DV, Shevchenko EV, Weller H (2004) Nano Lett 4:693–698

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Van Orden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willard, D.M., Mutschler, T., Yu, M. et al. Directing energy flow through quantum dots: towards nanoscale sensing. Anal Bioanal Chem 384, 564–571 (2006). https://doi.org/10.1007/s00216-005-0250-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0250-z

Keywords

Navigation