Skip to main content
Log in

Histamine H1 receptor occupancy by the new-generation antidepressants fluvoxamine and mirtazapine: a positron emission tomography study in healthy volunteers

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Histamine H1 antagonists have hypnotic, appetite-promoting, and sedative effects. The affinities of various antidepressants for histamine receptors have only been partially determined in vitro and animal study. Positron emission tomography (PET) can clarify the in vivo dynamics of antidepressants at histamine receptors.

Objectives

We performed human PET imaging with [11C]doxepin, a selective PET ligand of the histamine H1 receptor (H1R), to study the in vivo affinities of fluvoxamine and mirtazapine for the H1R.

Methods

The subjects were five male healthy Japanese volunteers. We performed cross-randomized PET imaging after single oral administration of fluvoxamine (25 mg), mirtazapine (15 mg), or placebo. PET data were analyzed by region-of-interest and voxel-by-voxel analysis. We concurrently measured plasma drug concentrations, using liquid chromatography/tandem mass spectrometry and subjective sleepiness.

Results

The binding potential ratio of mirtazapine in brain cortex was significantly lower than that of fluvoxamine or placebo. Fluvoxamine did not occupy the H1R, whereas H1R occupancy (H1RO) of mirtazapine reached 80–90 % in the cerebral neocortex. In the voxel-by-voxel analysis, the binding potential of mirtazapine was significantly lower than placebo in the dorsolateral prefrontal cortex, lateral temporal cortex, anterior cingulate gyrus, and posterior cingulate gyrus. The H1RO of mirtazapine depended on the plasma drug concentration (AUC0–180 min) and was related to subjective sleepiness.

Conclusions

Our results demonstrate a low affinity of fluvoxamine and a very high affinity of mirtazapine for the human brain H1R in vivo. This study provides a basis for investigating the efficacy of new-generation antidepressants in central histamine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91:449–458

    Article  PubMed  CAS  Google Scholar 

  • Anderson IM (1998) SSRIS versus tricyclic antidepressants in depressed inpatients: a meta-analysis of efficacy and tolerability. Depress Anxiety 7(Suppl 1):11–17

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual for mental disorders, 4th edn. American Psychiatric Press, Washington, DC, text revision

    Google Scholar 

  • Barbui C, Hotopf M (2001) Amitriptyline v. the rest: still the leading antidepressant after 40 years of randomised controlled trials. Br J Psychiatry 178:129–144

    Article  PubMed  CAS  Google Scholar 

  • Bhugra D, Corridan B, Rudge S, Leff J, Mallett R (1999) Early manifestations, personality traits and pathways into care for Asian and white first-onset cases of schizophrenia. Soc Psychiatry Psychiatr Epidemiol 34:595–599

    Article  PubMed  CAS  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672

    Article  PubMed  CAS  Google Scholar 

  • Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, Watanabe N, Nakagawa A, Omori IM, McGuire H, Tansella M, Barbui C (2009) Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet 373:746–758

    Article  PubMed  CAS  Google Scholar 

  • de Boer T (1996) The pharmacologic profile of mirtazapine. J Clin Psychiatry 57(Suppl 4):19–25

    PubMed  Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130

    Article  PubMed  CAS  Google Scholar 

  • Herz MI, Melville C (1980) Relapse in schizophrenia. Am J Psychiatry 137:801–805

    PubMed  CAS  Google Scholar 

  • Huston JP, Wagner U, Hasenohrl RU (1997) The tuberomammillary nucleus projections in the control of learning, memory and reinforcement processes: evidence for an inhibitory role. Behav Brain Res 83:97–105

    Article  PubMed  CAS  Google Scholar 

  • Hyttel J (1994) Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int Clin Psychopharmacol 9(Suppl 1):19–26

    Article  PubMed  Google Scholar 

  • Inoue I, Yanai K, Kitamura D, Taniuchi I, Kobayashi T, Niimura K, Watanabe T, Watanabe T (1996) Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc Natl Acad Sci USA 93:13316–13320

    Article  PubMed  CAS  Google Scholar 

  • Ishigooka J, Wakatabe H, Shimada E, Suzuki M, Fukuyama Y, Murasaki M, Miura S (1993) Phase Ι trial on the serotonin reuptake inhibitor SME3110 (fluvoxamine maleate). Clin Eval 21:441–90, Japanese

    Google Scholar 

  • Ito C, Shen H, Toyota H, Kubota Y, Sakurai E, Watanabe T, Sato M (1999) Effects of the acute and chronic restraint stresses on the central histaminergic neuron system of Fischer rat. Neurosci Lett 262:143–145

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi K, Ito C, Tashiro M, Kato M, Kano M, Itoh M, Iwata R, Matsuoka H, Sato M, Yanai K (2005) Histamine H1 receptors in schizophrenic patients measured by positron emission tomography. Eur Neuropsychopharmacol 15:185–191

    Article  PubMed  CAS  Google Scholar 

  • Iwata R, Pascali C, Bogni A, Miyake Y, Yanai K, Ido T (2001) A simple loop method for the automated preparation of (11C)raclopride from (11C)methyl triflate. Appl Radiat Isot 55:17–22

    Google Scholar 

  • Kano M, Fukudo S, Tashiro A, Utsumi A, Tamura D, Itoh M, Iwata R, Tashiro M, Mochizuki H, Funaki Y, Kato M, Hongo M, Yanai K (2004) Decreased histamine H1 receptor binding in the brain of depressed patients. Eur J Neurosci 20:803–810

    Article  PubMed  Google Scholar 

  • Kapur S (2001) Neuroimaging and drug development: an algorithm for decision making. J Clin Pharmacol Suppl: 64S-71S

  • Landolt HP, Wehrle R (2009) Antagonism of serotonergic 5-HT2A/2C receptors: mutual improvement of sleep, cognition and mood? Eur J Neurosci 29:1795–1809

    Google Scholar 

  • Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, Boteva K, Gilmore J (2001) The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biol Psychiatry 50:884–897

    Article  PubMed  CAS  Google Scholar 

  • Mazurkiewicz-Kwilecki IM (1980) Single and repeated air blast stress and brain histamine. Pharmacol Biochem Behav 12:35–39

    Article  PubMed  CAS  Google Scholar 

  • Mellman TA (2009) A human model that suggests a role for sleep in the cognitive neuropsychology of PTSD and recovery. Sleep 32:9–10

    PubMed  Google Scholar 

  • Mochizuki H, Kimura Y, Ishii K, Oda K, Sasaki T, Tashiro M, Yanai K, Ishiwata K (2004a) Quantitative measurement of histamine H(1) receptors in human brains by PET and [11C]doxepin. Nucl Med Biol 31:165–171

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Kimura Y, Ishii K, Oda K, Sasaki T, Tashiro M, Yanai K, Ishiwata K (2004b) Simplified PET measurement for evaluating histamine H1 receptors in human brains using [11C]doxepin. Nucl Med Biol 31:1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Ohtani Y, Ishii Y, Okada R, Maruyama K, Fukuyama Y, Murasaki M, Miura S (1990) A Phase Ι Study of Org 3770. Kiso To Riysho (The Clinical Report) 24: 5365–77. Japanese

  • Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283:1305–1322

    PubMed  CAS  Google Scholar 

  • Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci USA 81:2572–2576

    Article  PubMed  CAS  Google Scholar 

  • Parkin C, Fairweather DB, Shamsi Z, Stanley N, Hindmarch I (1998) The effects of cigarette smoking on overnight performance. Psychopharmacology (Berl) 136:172–178

    Article  CAS  Google Scholar 

  • Raber J (2007) Histamine receptor-mediated signaling during development and brain function in adulthood. Cell Mol Life Sci 64:735–741

    Article  PubMed  CAS  Google Scholar 

  • Rudin M (2009) Noninvasive structural, functional, and molecular imaging in drug development. Curr Opin Chem Biol 13:360–371

    Article  PubMed  CAS  Google Scholar 

  • Shamsi Z, Kimber S, Hindmarch I (2001) An investigation into the effects of cetirizine on cognitive function and psychomotor performance in healthy volunteers. Eur J Clin Pharmacol 56:865–871

    Article  PubMed  CAS  Google Scholar 

  • Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33, quiz 34–57

    PubMed  Google Scholar 

  • Shibuya K, Funaki Y, Hiraoka K, Yoshikawa T, Naganuma F, Miyake M, Watanuki S, Sato H, Tashiro M, Yanai K (2012) [(11)C]Doxepin binding to histamine H1 receptors in living human brain: reproducibility during attentive waking and circadian rhythm. Front Syst Neurosci 6:45

    Article  PubMed  CAS  Google Scholar 

  • Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70

    Article  PubMed  CAS  Google Scholar 

  • Smith DF, Stork BS, Wegener G, Jakobsen S, Bender D, Audrain H, Jensen SB, Hansen SB, Rodell A, Rosenberg R (2007) Receptor occupancy of mirtazapine determined by PET in healthy volunteers. Psychopharmacology (Berl) 195:131–138

    Article  CAS  Google Scholar 

  • Stahl S (2008) Selective histamine H1 antagonism: novel hypnotic and pharmacologic actions challenge classical notions of antihistamines. CNS Spectr 13:1027–1038

    PubMed  Google Scholar 

  • Suzuki A, Tashiro M, Kimura Y, Mochizuki H, Ishii K, Watabe H, Yanai K, Ishiwata K (2005) Use of reference tissue models for quantification of histamine H1 receptors in human brain by using positron emission tomography and [11c]doxepin. Ann Nucl Med 19:425–433

    Article  PubMed  CAS  Google Scholar 

  • Tagawa M, Kano M, Okamura N, Higuchi M, Matsuda M, Mizuki Y, Arai H, Iwata R, Fujii T, Komemushi S, Ido T, Itoh M, Sasaki H, Watanabe T, Yanai K (2001) Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine. Br J Clin Pharmacol 52:501–509

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brainGeorge Thieme Verlag, Stuttgart

  • Tashiro M, Sakurada Y, Iwabuchi K, Mochizuki H, Kato M, Aoki M, Funaki Y, Itoh M, Iwata R, Wong DF, Yanai K (2004) Central effects of fexofenadine and cetirizine: measurement of psychomotor performance, subjective sleepiness, and brain histamine H1-receptor occupancy using 11C-doxepin positron emission tomography. J Clin Pharmacol 44:890–900

    Article  PubMed  CAS  Google Scholar 

  • Tashiro M, Mochizuki H, Sakurada Y, Ishii K, Oda K, Kimura Y, Sasaki T, Ishiwata K, Yanai K (2006) Brain histamine H receptor occupancy of orally administered antihistamines measured by positron emission tomography with (11)C-doxepin in a placebo-controlled crossover study design in healthy subjects: a comparison of olopatadine and ketotifen. Br J Clin Pharmacol 61:16–26

    Article  PubMed  CAS  Google Scholar 

  • Tashiro M, Duan X, Kato M, Miyake M, Watanuki S, Ishikawa Y, Funaki Y, Iwata R, Itoh M, Yanai K (2008) Brain histamine H1 receptor occupancy of orally administered antihistamines, bepotastine and diphenhydramine, measured by PET with 11C-doxepin. Br J Clin Pharmacol 65:811–821

    Article  PubMed  CAS  Google Scholar 

  • Taylor KM, Snyder SH (1971) Brain histamine: rapid apparent turnover altered by restraint and cold stress. Science 172:1037–1039

    Article  PubMed  CAS  Google Scholar 

  • Torres SJ, Nowson CA (2007) Relationship between stress, eating behavior, and obesity. Nutrition 23:887–894

    Article  PubMed  Google Scholar 

  • Verdiere M, Rose C, Schwartz JC (1977) Turnover of cerebral histamine in a stressful situation. Brain Res 129:107–119

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295:13–25

    Article  PubMed  CAS  Google Scholar 

  • Yanai K, Tashiro M (2007) The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 113:1–15

    Article  PubMed  CAS  Google Scholar 

  • Yanai K, Watanabe T, Meguro K, Yokoyama H, Sato I, Sasano H, Itoh M, Iwata R, Takahashi T, Ido T (1992) Age-dependent decrease in histamine H1 receptor in human brains revealed by PET. Neuroreport 3:433–436

    Article  PubMed  CAS  Google Scholar 

  • Yoshitomi I, Itoh Y, Oishi R, Saeki K (1986) Brain histamine turnover enhanced by footshock. Brain Res 362:195–198

    Article  PubMed  CAS  Google Scholar 

  • Yoshizawa M, Tashiro M, Fukudo S, Yanai K, Utsumi A, Kano M, Karahasi M, Endo Y, Morisita J, Sato Y, Adachi M, Itoh M, Hongo M (2009) Increased brain histamine H1 receptor binding in patients with anorexia nervosa. Biol Psychiatry 65:329–335

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed at the Cyclotron and Radioisotope Center, Tohoku University. This work was supported by a grant-in-aid for scientific research from the Japan Society for the Promotion of Science (no. 21650088) and the Japan Society of Technology (“molecular imaging”). We appreciate the technical assistance provided by Y. Ishikawa, S. Watanuki, and K. Takeda in the PET studies.

Sources of support

This work was supported in part by a grant-in-aid for scientific research (no. 21650088 for K. Yanai) from the Japan Society for the Promotion of Science, as well as by a grant from the Japan Society for Technology (“molecular imaging”).

Conflict of interest

No conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotoshi Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, H., Ito, C., Tashiro, M. et al. Histamine H1 receptor occupancy by the new-generation antidepressants fluvoxamine and mirtazapine: a positron emission tomography study in healthy volunteers. Psychopharmacology 230, 227–234 (2013). https://doi.org/10.1007/s00213-013-3146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3146-1

Keywords

Navigation