Skip to main content

Advertisement

Log in

Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

Drug reinforcement and the reinstatement of drug seeking are associated with the pathological processing of drug-associated cue memories that can be disrupted by manipulating memory consolidation and reconsolidation. Ras-related C3 botulinum toxin substrate (Rac) is involved in memory processing by regulating actin dynamics and neural structure plasticity. The nucleus accumbens (NAc) and amygdala have been implicated in the consolidation and reconsolidation of emotional memories. Therefore, we hypothesized that Rac in the NAc and amygdala plays a role in the consolidation and reconsolidation of cocaine-associated cue memory.

Methods

Conditioned place preference (CPP) and microinjection of Rac inhibitor NSC23766 were used to determine the role of Rac in the NAc and amygdala in the consolidation and reconsolidation of cocaine-associated cue memory in rats.

Results

Microinjections of NSC23766 into the NAc core but not shell, basolateral (BLA), or central amygdala (CeA) after each cocaine-conditioning session inhibited the consolidation of cocaine-induced CPP. A microinjection of NSC23766 into the BLA but not CeA, NAc core, or NAc shell immediately after memory reactivation induced by exposure to a previously cocaine-paired context disrupted the reconsolidation of cocaine-induced CPP. The effect of memory disruption on cocaine reconsolidation was specific to reactivated memory, persisted at least 2 weeks, and was not reinstated by a cocaine-priming injection.

Conclusions

Our findings indicate that Rac in the NAc core and BLA are required for the consolidation and reconsolidation of cocaine-associated cue memory, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3:563–73

    Article  CAS  PubMed  Google Scholar 

  • Beninger RJ, Gerdjikov T (2004) The role of signaling molecules in reward-related incentive learning. Neurotox Res 6:91–104

    Article  PubMed  Google Scholar 

  • Bernardi RE, Ryabinin AE, Berger SP, Lattal KM (2009) Post-retrieval disruption of a cocaine conditioned place preference by systemic and intrabasolateral amygdala beta2- and alpha1-adrenergic antagonists. Learn Mem 16:777–89

    Article  CAS  PubMed  Google Scholar 

  • Boettner B, Van Aelst L (2002) The role of Rho GTPases in disease development. Gene 286:155–74

    Article  CAS  PubMed  Google Scholar 

  • Borrelli S, Musilli M, Martino A, Diana G (2013) Long-lasting efficacy of the cognitive enhancer cytotoxic necrotizing factor 1. Neuropharmacology 64:74–80

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–52

    Article  PubMed  Google Scholar 

  • Cervo L, Mukherjee S, Bertaglia A, Samanin R (1997) Protein kinases A and C are involved in the mechanisms underlying consolidation of cocaine place conditioning. Brain Res 775:30–6

    Article  CAS  PubMed  Google Scholar 

  • Cestari V, Mele A, Oliverio A, Castellano C (1996) Amygdala lesions block the effect of cocaine on memory in mice. Brain Res 713:286–9

    Article  CAS  PubMed  Google Scholar 

  • Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–46

    Article  CAS  PubMed  Google Scholar 

  • Crespo JA, Stockl P, Ueberall F, Jenny M, Saria A, Zernig G (2012) Activation of PKCzeta and PKMzeta in the nucleus accumbens core is necessary for the retrieval, consolidation and reconsolidation of drug memory. PLoS One 7:e30502

    Article  CAS  PubMed  Google Scholar 

  • D’Cunha TM, King SJ, Fleming AS, Levy F (2011) Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal memory in postpartum rats. Horm Behav 59:14–21

    Article  PubMed  Google Scholar 

  • Dalley JW, Laane K, Theobald DE, Armstrong HC, Corlett PR, Chudasama Y, Robbins TW (2005) Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc Natl Acad Sci U S A 102:6189–94

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1):227–41

    Article  PubMed  Google Scholar 

  • Diana G, Valentini G, Travaglione S, Falzano L, Pieri M, Zona C, Meschini S, Fabbri A, Fiorentini C (2007) Enhancement of learning and memory after activation of cerebral Rho GTPases. Proc Natl Acad Sci U S A 104:636–41

    Article  CAS  PubMed  Google Scholar 

  • Dietz DM, Sun H, Lobo MK, Cahill ME, Chadwick B, Gao V, Koo JW, Mazei-Robison MS, Dias C, Maze I, Damez-Werno D, Dietz KC, Scobie KN, Ferguson D, Christoffel D, Ohnishi Y, Hodes GE, Zheng Y, Neve RL, Hahn KM, Russo SJ, Nestler EJ (2012) Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat Neurosci 15:891–6

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y (2006) Reconsolidation: the advantage of being refocused. Curr Opin Neurobiol 16:174–8

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–35

    Article  CAS  PubMed  Google Scholar 

  • Feltenstein MW, See RE (2007) NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse. Neurobiol Learn Mem 88:435–44

    Article  CAS  PubMed  Google Scholar 

  • Fuchs RA, Bell GH, Ramirez DR, Eaddy JL, Su ZI (2009) Basolateral amygdala involvement in memory reconsolidation processes that facilitate drug context-induced cocaine seeking. Eur J Neurosci 30:889–900

    Article  PubMed  Google Scholar 

  • Fuchs RA, Feltenstein MW, See RE (2006) The role of the basolateral amygdala in stimulus-reward memory and extinction memory consolidation and in subsequent conditioned cued reinstatement of cocaine seeking. Eur J Neurosci 23:2809–13

    Article  PubMed  Google Scholar 

  • Gabriele A, See RE (2010) Reversible inactivation of the basolateral amygdala, but not the dorsolateral caudate putamen, attenuates consolidation of cocaine-cue associative learning in a reinstatement model of drug-seeking. Eur J Neurosci 32:1024–9

    Article  PubMed  Google Scholar 

  • Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–9

    Article  CAS  PubMed  Google Scholar 

  • Hernandez PJ, Andrzejewski ME, Sadeghian K, Panksepp JB, Kelley AE (2005) AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: a context-limited role in the encoding and consolidation of instrumental memory. Learn Mem 12:285–95

    Article  PubMed  Google Scholar 

  • Hernandez PJ, Sadeghian K, Kelley AE (2002) Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nat Neurosci 5:1327–31

    Article  CAS  PubMed  Google Scholar 

  • Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–70

    Article  CAS  PubMed  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–98

    Article  CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–69

    Article  CAS  PubMed  Google Scholar 

  • Jonkman S, Everitt BJ (2011) Dorsal and ventral striatal protein synthesis inhibition affect reinforcer valuation but not the consolidation of instrumental learning. Learn Mem 18:617–24

    Article  CAS  PubMed  Google Scholar 

  • Kennedy MB, Beale HC, Carlisle HJ, Washburn LR (2005) Integration of biochemical signalling in spines. Nat Rev Neurosci 6:423–34

    Article  CAS  PubMed  Google Scholar 

  • LaLumiere RT, Nawar EM, McGaugh JL (2005) Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions. Learn Mem 12:296–301

    Article  PubMed  Google Scholar 

  • Lee JL (2009) Reconsolidation: maintaining memory relevance. Trends Neurosci 32:413–20

    Article  CAS  PubMed  Google Scholar 

  • Lee JL, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801

    Article  CAS  PubMed  Google Scholar 

  • Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–43

    Article  CAS  PubMed  Google Scholar 

  • Lee JL, Milton AL, Everitt BJ (2006) Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J Neurosci 26:5881–7

    Article  CAS  PubMed  Google Scholar 

  • Leri F, Flores J, Rodaros D, Stewart J (2002) Blockade of stress-induced but not cocaine-induced reinstatement by infusion of noradrenergic antagonists into the bed nucleus of the stria terminalis or the central nucleus of the amygdala. J Neurosci 22:5713–8

    CAS  PubMed  Google Scholar 

  • Li FQ, Xue YX, Wang JS, Fang Q, Li YQ, Zhu WL, He YY, Liu JF, Xue LF, Shaham Y, Lu L (2010) Basolateral amygdala cdk5 activity mediates consolidation and reconsolidation of memories for cocaine cues. J Neurosci 30:10351–9

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Li FQ, Wang XY, Wu P, Zhao M, Xu CM, Shaham Y, Lu L (2008) Central amygdala extracellular signal-regulated kinase signaling pathway is critical to incubation of opiate craving. J Neurosci 28:13248–57

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y (2005) Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 8:212–9

    Article  CAS  PubMed  Google Scholar 

  • Maren S (2005) Building and burying fear memories in the brain. Neuroscientist 11:89–99

    Article  PubMed  Google Scholar 

  • Martinez LA, Klann E, Tejada-Simon MV (2007) Translocation and activation of Rac in the hippocampus during associative contextual fear learning. Neurobiol Learn Mem 88:104–13

    Article  CAS  PubMed  Google Scholar 

  • McFarland K, Davidge SB, Lapish CC, Kalivas PW (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–60

    Article  CAS  PubMed  Google Scholar 

  • McGaugh JL (1966) Time-dependent processes in memory storage. Science 153:1351–8

    Article  CAS  PubMed  Google Scholar 

  • McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–51

    Article  CAS  PubMed  Google Scholar 

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28

    Article  CAS  PubMed  Google Scholar 

  • Messaoudi E, Kanhema T, Soule J, Tiron A, Dagyte G, da Silva B, Bramham CR (2007) Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci 27:10445–55

    Article  CAS  PubMed  Google Scholar 

  • Milekic MH, Brown SD, Castellini C, Alberini CM (2006) Persistent disruption of an established morphine conditioned place preference. J Neurosci 26:3010–20

    Article  CAS  PubMed  Google Scholar 

  • Milekic MH, Pollonini G, Alberini CM (2007) Temporal requirement of C/EBPbeta in the amygdala following reactivation but not acquisition of inhibitory avoidance. Learn Mem 14:504–11

    Article  CAS  PubMed  Google Scholar 

  • Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–84

    Article  CAS  PubMed  Google Scholar 

  • Milton AL, Lee JL, Butler VJ, Gardner R, Everitt BJ (2008) Intra-amygdala and systemic antagonism of NMDA receptors prevents the reconsolidation of drug-associated memory and impairs subsequently both novel and previously acquired drug-seeking behaviors. J Neurosci 28:8230–7

    Article  CAS  PubMed  Google Scholar 

  • Misanin JR, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160:554–5

    Article  CAS  PubMed  Google Scholar 

  • Mucha RF, van der Kooy D, O’Shaughnessy M, Bucenieks P (1982) Drug reinforcement studied by the use of place conditioning in rat. Brain Res 243:91–105

    Article  CAS  PubMed  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–6

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47(Suppl 1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  CAS  PubMed  Google Scholar 

  • O’Brien CP, Childress AR, McLellan AT, Ehrman R (1992) Classical conditioning in drug-dependent humans. Ann N Y Acad Sci 654:400–15

    Article  PubMed  Google Scholar 

  • Otis JM, Dashew KB, Mueller D (2013) Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory. J Neurosci 33:1271–81

    Article  CAS  PubMed  Google Scholar 

  • Pastuzyn ED, Chapman DE, Wilcox KS, Keefe KA (2012) Altered learning and Arc-regulated consolidation of learning in striatum by methamphetamine-induced neurotoxicity. Neuropsychopharmacology 37:885–95

    Article  CAS  PubMed  Google Scholar 

  • Pedroza-Llinas R, Ramirez-Lugo L, Guzman-Ramos K, Zavala-Vega S, Bermudez-Rattoni F (2009) Safe taste memory consolidation is disrupted by a protein synthesis inhibitor in the nucleus accumbens shell. Neurobiol Learn Mem 92:45–52

    Article  CAS  PubMed  Google Scholar 

  • Pitts MW, Todorovic C, Blank T, Takahashi LK (2009) The central nucleus of the amygdala and corticotropin-releasing factor: insights into contextual fear memory. J Neurosci 29:7379–88

    Article  CAS  PubMed  Google Scholar 

  • Rajnicek AM, Foubister LE, McCaig CD (2006) Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. J Cell Sci 119:1723–35

    Article  CAS  PubMed  Google Scholar 

  • Ren ZY, Liu MM, Xue YX, Ding ZB, Xue LF, Zhai SD, Lu L (2012) A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory. Neuropsychopharmacology (in press).

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–10

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Ersche KD, Everitt BJ (2008) Drug addiction and the memory systems of the brain. Ann N Y Acad Sci 1141:1–21

    Article  CAS  PubMed  Google Scholar 

  • Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604–7

    Article  CAS  PubMed  Google Scholar 

  • Roullet P, Sargolini F, Oliverio A, Mele A (2001) NMDA and AMPA antagonist infusions into the ventral striatum impair different steps of spatial information processing in a nonassociative task in mice. J Neurosci 21:2143–9

    CAS  PubMed  Google Scholar 

  • Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–42

    Article  PubMed  Google Scholar 

  • Sananbenesi F, Fischer A, Wang X, Schrick C, Neve R, Radulovic J, Tsai LH (2007) A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nat Neurosci 10:1012–9

    Article  CAS  PubMed  Google Scholar 

  • See RE (2005) Neural substrates of cocaine-cue associations that trigger relapse. Eur J Pharmacol 526:140–6

    Article  CAS  PubMed  Google Scholar 

  • Stewart J, de Wit H, Eikelboom R (1984) Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol Rev 91:251–68

    Article  CAS  PubMed  Google Scholar 

  • Taubenfeld SM, Milekic MH, Monti B, Alberini CM (2001) The consolidation of new but not reactivated memory requires hippocampal C/EBPbeta. Nat Neurosci 4:813–8

    Article  CAS  PubMed  Google Scholar 

  • Tejada-Simon MV, Villasana LE, Serrano F, Klann E (2006) NMDA receptor activation induces translocation and activation of Rac in mouse hippocampal area CA1. Biochem Biophys Res Commun 343:504–12

    Article  CAS  PubMed  Google Scholar 

  • Theberge FR, Milton AL, Belin D, Lee JL, Everitt BJ (2010) The basolateral amygdala and nucleus accumbens core mediate dissociable aspects of drug memory reconsolidation. Learn Mem 17:444–53

    Article  CAS  PubMed  Google Scholar 

  • Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8:262–75

    Article  CAS  PubMed  Google Scholar 

  • Voorn P, Gerfen CR, Groenewegen HJ (1989) Compartmental organization of the ventral striatum of the rat: immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium-binding protein. J Comp Neurol 289:189–201

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Luo YX, He YY, Li FQ, Shi HS, Xue LF, Xue YX, Lu L (2010) Nucleus accumbens core mammalian target of rapamycin signaling pathway is critical for cue-induced reinstatement of cocaine seeking in rats. J Neurosci 30:12632–41

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Zhao M, Ghitza UE, Li YQ, Lu L (2008) Stress impairs reconsolidation of drug memory via glucocorticoid receptors in the basolateral amygdala. J Neurosci 28:5602–10

    Article  CAS  PubMed  Google Scholar 

  • Wells AM, Arguello AA, Xie X, Blanton MA, Lasseter HC, Reittinger AM, Fuchs RA (2012) Extracellular signal-regulated kinase in the basolateral amygdala, but not the nucleus accumbens core, is critical for context-response-cocaine memory reconsolidation in rats. Neuropsychopharmacology (in press).

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–7

    Article  CAS  PubMed  Google Scholar 

  • Wichmann R, Fornari RV, Roozendaal B (2012) Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning. Neurobiol Learn Mem 98:197–205

    Article  CAS  PubMed  Google Scholar 

  • Wikler A (1973) Dynamics of drug dependence. Implications of a conditioning theory for research and treatment. Arch Gen Psychiatry 28:611–6

    Article  CAS  PubMed  Google Scholar 

  • Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J Neurosci 26:12387–96

    Article  CAS  PubMed  Google Scholar 

  • Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 54:679–720

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Xue YX, Ding ZB, Xue LF, Xu CM, Lu L (2011) Glycogen synthase kinase 3beta in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory. J Neurochem 118:113–25

    Article  CAS  PubMed  Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–67

    Article  CAS  PubMed  Google Scholar 

  • Zhai H, Wu P, Chen S, Li F, Liu Y, Lu L (2008) Effects of scopolamine and ketamine on reconsolidation of morphine conditioned place preference in rats. Behav Pharmacol 19:211–6

    Article  CAS  PubMed  Google Scholar 

  • Zhao LY, Zhang XL, Shi J, Epstein DH, Lu L (2009) Psychosocial stress after reactivation of drug-related memory impairs later recall in abstinent heroin addicts. Psychopharmacol (Berl) 203:599–608

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (no. 2009CB522004) and the Natural Science Foundation of China (nos. 81201032, 31230033, and 31070958).

Conflict of interest

The authors declare that they do not have any conflicts of interest (financial or otherwise) related to the data presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wu or Lin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, ZB., Wu, P., Luo, YX. et al. Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats. Psychopharmacology 228, 427–437 (2013). https://doi.org/10.1007/s00213-013-3050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3050-8

Keywords

Navigation