Skip to main content
Log in

Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Valproic acid (VPA) is a psychoactive drug currently used for the treatment of epilepsy. Recently it has been introduced in psychiatry for the treatment of bipolar disorders, aggression, impulsivity, and resistant schizophrenia, although the mechanism by which VPA acts on these psychiatric diseases remains still unknown.

Objectives

The aim of this study was to analyze the distinct effects of sodium-(Na-) and magnesium-valproate (Mg-VPA) in pyramidal neurons of the medial prefrontal cortex (mPFC) and their interactions with gamma-aminobutyric acid (GABA) and excitatory amino acid responses.

Materials and methods

In vivo electrophysiology and microiontophoresis techniques were used to attend these goals.

Results

Both VPA salts decreased spontaneous neuronal firing activity in greater than 60% of recorded pyramidal neurons as well as potentiated GABA inhibitions. When injected at equal concentrations and currents, Mg-VPA blocked the excitatory responses induced by N-methyl-d-aspartate (NMDA) more frequently than Na-VPA. Both VPA salts equally blocked the excitatory responses of quisqualate and kainate.

Conclusions

These data suggest that VPA salts significantly modulate the activity of excitatory amino acid at mPFC pyramidal neurons and this mechanism should explain the therapeutic effects of valproate in psychiatric diseases involving NMDA, AMPA, and kainate receptors at the mPFC level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashby CR Jr, Minabe Y, Edwards E, Wang RY (1991a) 5HT3-like receptors in the rat medial prefrontal cortex: an electrophysiological study. Brain Res 550:181–191

    Article  PubMed  CAS  Google Scholar 

  • Ashby CR Jr, Minabe Y, Edwards E, Wang RY (1991b) Comparison of the effects of various typical and atypical antipsychotic drugs on the suppressant action of 2-methylserotonin on medial prefrontal cortical cells in the rat. Synapse 8:155–161

    Article  PubMed  CAS  Google Scholar 

  • Baldino F, Geller HM (1981) Sodium valproate enhancement of g-aminobutyric acid (GABA) inhibition: electrophysiological evidence for anticonvulsant activity. J Pharmacol Exp Ther 217:445–450

    PubMed  CAS  Google Scholar 

  • Bartho P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsaki G (2004) Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J Neurophysiol 92:600–608

    Article  PubMed  Google Scholar 

  • Blume HW, Lamour Y, Arnauld E, Layton BS, Renaud LP (1979) Sodium di-n-propylacetate (valproate) action on single neurons in rat cerebral cortex and hippocampus. Brain Res 168:182–185

    Article  Google Scholar 

  • Carlezon WA Jr, Nestler EJ (2002) Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci 25:610–615

    Article  PubMed  CAS  Google Scholar 

  • Chapman A, Keane PE, Meldrum BS, Simiand J, Vernieres JC (1982) Mechanisms of anticonvulsant action of valproate. Prog Neurobiol 19:315–359

    Article  PubMed  CAS  Google Scholar 

  • Chutkov JG (1981) The neurophysiological function of Mg: an update. Magnes Bull 3:115–120

    Google Scholar 

  • Citrome L (2003) Schizophrenia and valproate. Psychopharmacol Bull 37(Suppl 2):74–88

    PubMed  Google Scholar 

  • Collins RM Jr, Zielke HR, Woody RC (1994) Valproate increases glutaminase and decreases glutamine synthetase activities in primary cultures of rat brain astrocytes. J Neurochem 62:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Cunningham MO, Woodhall GL, Jones RS (2003) Valproate modifies spontaneous excitation and inhibition at cortical synapses in vitro. Neuropharmacology 45:907–917

    Article  PubMed  CAS  Google Scholar 

  • Detich N, Bovenzi V, Szyf M (2003) Valproate induces replication-independent active DNA demethylation. J Biol Chem 278:27586–27592

    Article  PubMed  CAS  Google Scholar 

  • Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST, Einat H, Manji HK (2004) Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J Neurosci 24:6578–6589

    Article  PubMed  CAS  Google Scholar 

  • Ekwuru MO, Cunningham JM (1990) Phaclophen increases GABA release from valproate treated rats. Br J Pharmacol 99:251P (Suppl)

    Google Scholar 

  • Gean PW, Huang CC, Hung CR, Tsai JJ (1993) Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res Bull 33:333–336

    Article  Google Scholar 

  • Gent JP, Phillips NI (1980) Sodium di-n-propylacetate (valproate) potentiates responses to GABA and muscimol on single central neurons. Brain Res 197:275–278

    Article  PubMed  CAS  Google Scholar 

  • Gobbi G, Janiri L (1999) Clozapine blocks dopamine, 5-HT2 and 5-HT3 responses in the medial prefrontal cortex: an in vivo microiontophoretic study. Eur Neuropsychopharmacol 10:43–49

    Article  PubMed  CAS  Google Scholar 

  • Gobbi G, Debonnel G (2003) What is a recommended treatment for aggression in a patient with schizophrenia? J Psychiatry Neurosci 28:320

    PubMed  Google Scholar 

  • Gram L, Larsson OM, Johnsen AH, Schousboe A (1988) Effects of valproate, vibagatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 2:87–95

    Article  PubMed  CAS  Google Scholar 

  • Gregg TR, Siegel A (2001) Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry 25:91–140

    Article  PubMed  CAS  Google Scholar 

  • Hajos N, Nusser Z, Rancz EA, Freund TF, Mody I (2000) Cell type- and synapse-specific variability in synaptic GABAA receptor occupancy. Eur J Neurosci 12:810–818

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24:6590–6599

    Article  PubMed  CAS  Google Scholar 

  • Hollander E, Tracy KA, Swann AC, Coccaro EF, McElroy SL, Wozniak P, Sommerville KW, Nemeroff CB (2003) Divalproex in the treatment of impulsive aggression: efficacy in cluster B personality disorders. Neuropsychopharmacology 28:1186–1197

    Article  PubMed  CAS  Google Scholar 

  • Hollander E, Swann AC, Coccaro EF, Jiang P, Smith TB (2005) Impact of trait impulsivity and state aggression on divalproex versus placebo response in borderline personality disorder. Am J Psychiatr 162:621–624

    Article  PubMed  Google Scholar 

  • Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9:984–997, 979

    Article  PubMed  CAS  Google Scholar 

  • Johannessen CU (2000) Mechanisms of action of valproate: a commentatory. Neurochem Int 37:103–110

    Article  PubMed  CAS  Google Scholar 

  • Kerwin RW, Olpe HR, Schumt ZM (1980) The effect of sodium-n-dipropyl acetate on gamma-aminobutyric acid-dependent inhibition in the rat cortex and substantia nigra in relation to its anticonvulsant activity. Br J Pharmacol 71:545–551

    PubMed  CAS  Google Scholar 

  • Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97(2):153–179

    Article  PubMed  CAS  Google Scholar 

  • Lindenmayer JP, Kotsaftis A (2000) Use of sodium valproate in violent and aggressive behaviors: a critical review. J Clin Psychiatry 61:123–128

    Article  PubMed  CAS  Google Scholar 

  • Loscher W, Vetter M (1985) In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat. Correlation to pharmacological activities. Biochem Pharmacol 34:1747–1756

    Article  PubMed  CAS  Google Scholar 

  • Loscher W (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 18(4):485–502

    Article  PubMed  CAS  Google Scholar 

  • Loscher W, Horstermann D (1994) Differential effects of vigabatrin, gamma-acetylenic GABA, aminooxyacetic acid, and valproate on levels of various amino acids in rat brain regions and plasma. Naunyn Schmiedebergs Arch Pharmacol 349:270–278

    Article  PubMed  CAS  Google Scholar 

  • Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:213–219

    Article  Google Scholar 

  • McLean MJ, Macdonald RL (1986) Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 237:1001–1011

    PubMed  CAS  Google Scholar 

  • Michael N, Erfurth A, Ohrmann P, Gossling M, Arolt V, Heindel W, Pfleiderer B (2003) Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology 168(3):344–346

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in the stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Rigo JM, Hans G, Nguyen L, Rocher V, Belachew S, Malgrange B, Leprince P, Moonen G, Selak I, Matagne A, Klitgaard H (2002) The anti-epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents. Br J Pharmacol 136:659–672

    Article  PubMed  CAS  Google Scholar 

  • Scarr E, Pavey G, Sundram S, MacKinnon A, Dean B (2003) Decreased hippocampal NMDA, but not kainate or AMPA receptors in bipolar disorder. Bipolar Disord 5:257–264

    Article  PubMed  CAS  Google Scholar 

  • Steppuhn KG, Turski L (1993) Modulation of the seizure threshold for excitatory amino acids in mice by antiepileptic drugs and chemoconvulsants. J Pharmacol Exp Ther 265:1063–1070

    PubMed  CAS  Google Scholar 

  • Swadlow HA (2003) Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cereb Cortex 13:25–32

    Article  PubMed  Google Scholar 

  • Taverna S, Mantegazza M, Franceschetti S, Avanzini G (1998) Valproate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res 32:304–308

    Article  PubMed  CAS  Google Scholar 

  • Tian LM, Alkadhi KA (1994) Valproic acid inhibits the depolarizing rectification in neurons of rat amygdala. Neuropharmacology 33:1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P, Sharma R, Grayson DR, Costa E, Guidotti A (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci U S A 99(26):17095–17100

    Article  PubMed  CAS  Google Scholar 

  • Tremolizzo L, Doueiri MS, Dong E, Grayson DR, Davis J, Pinna G, Tueting P, Rodriguez-Menendez V, Costa E, Guidotti A (2005) Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57:500–509

    Article  PubMed  CAS  Google Scholar 

  • Turski L, Niemann W, Stephens DN (1990) Differential effects of antiepileptic drugs and beta-carbolines on seizures induced by excitatory amino acids. Neuroscience 39(3):799–807

    Article  PubMed  CAS  Google Scholar 

  • Wang RY, de Montigny C, Gold BI, Roth RH, Aghajanian GK (1979) Denervation supersensitivity to serotonin in rat forebrain: single cell studies. Brain Res 17:479–497

    Article  Google Scholar 

  • Winterer G, Hermann WM (2000) Valproate and the symptomatic treatment of schizophrenia spectrum patients. Pharmacopsychiatry 33:182–188

    Article  PubMed  CAS  Google Scholar 

  • Zeise ML, Kasparow S, Zieglgänsberger W (1991) Valproate suppresses N-methyl-d-aspartate-evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 544:345–348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Sigma-Tau, Pomezia (Italy), which kindly supplied sodium- and magnesium-valproate and the drugs used in this work. G.G. received a salary award and a grant from Fonds de la Recherche en Santé du Quebéc (no.1991) and from Canadian Psychiatric Research Foundation (CPRF). LJ received a research grant (no. 7010861) from the Italian Ministry of University and Scientific–Technological Research (MURST). The authors also wish to thank Dr. Paolo Montuschi (Institute of Pharmacology, Catholic University, Rome), Dr. Umberto Lombardi for their helpful assistance, Mr. Noam Katz for editing the manuscript, and Dr. Guy Debonnel and Dr. Guillaume Lucas (McGill University, Montreal) for feedback on the manuscript and for stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Gobbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gobbi, G., Janiri, L. Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology 185, 255–262 (2006). https://doi.org/10.1007/s00213-006-0317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0317-3

Keywords

Navigation