Skip to main content
Log in

Damped wave systems on networks: exponential stability and uniform approximations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider a damped linear hyperbolic system modeling the propagation of pressure waves in a network of pipes. Well-posedness is established via semi-group theory and the existence of a unique steady state is proven in the absence of driving forces. Under mild assumptions on the network topology and the model parameters, we show exponential stability and convergence to equilibrium. This generalizes related results for single pipes and multi-dimensional domains to the network context. Our proofs are based on a variational formulation of the problem, some graph theoretic results, and appropriate energy estimates. These arguments are rather generic and allow us to consider also Galerkin approximations and to prove the uniform exponential stability of the resulting semi-discretizations under mild compatibility conditions on the approximation spaces. A subsequent time discretization by implicit Runge–Kutta methods then allows to obtain fully discrete schemes with uniform exponential decay behavior. A particular realization by mixed finite elements is discussed and the theoretical results are illustrated by numerical tests in which also bounds for the decay rate are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdallah, F., Mercier, D., Nicaise, S., Ammari, K.: Exponential stability of the wave equation on a star shaped network with indefinite sign damping. Palest. J. Math. 2, 113–143 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Babin, A.V., Vishik, M.I.: Regular attractors of semigroups and evolution equations. J. Math. Pures Appl. 62, 441–491 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations Volume 25 of Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1991)

    Google Scholar 

  4. Banks, H.T., Ito, K., Wang, C.: Exponentially stable approximations of weakly damped wave equations. In: Estimation and Control of Distributed Parameter Systems, Volume 100 of International Series of Numerical Mathematics, pp. 6–33. Birkhäuser, Basel (1991)

  5. Below, J.V.: Classical solvability of linear parabolic equations on networks. J. Differ. Equ. 72, 316–337 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berge, C.: Graphs, 2 Rev edn. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  7. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed Finite Elements, Compatibility Conditions, and Applications Volume 1939 of Lecture Notes in Mathematics. Springer, Berlin (2008)

    Google Scholar 

  9. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications Volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  10. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO Anal. Numer. 2, 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  11. Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: model hierarchies, non-isothermal models and simulations of networks. Multiscale Model. Simul. 9, 601–623 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal. 33, 492–504 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cox, S., Zuazua, E.: The rate at which energy decays in a damped string. Commun. Part. Differ. Equ. 19, 213–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cramer, D., Latushkin, Y.: Gearhart–prüss theorem in stability for wave equations: a survey. In: Lecture Note in Pure and Applied Mathematics, pp. 105–119 (2003)

  15. Dáger, R., Zuazua, E.: Wave propagation, observation and control in \(1-d\) flexible multi-structures Volume 50 of Mathématiques and Applications (Berlin) [Mathematics and Applications]. Springer, Berlin (2006)

  16. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Evolution Problems I., vol. 5. Springer, Berlin (1992)

    MATH  Google Scholar 

  17. Egger, H., Kugler, T.: Uniform exponential stability of Galerkin approximations for damped wave systems. arXiv:1511.08341 (2015)

  18. Ervedoza, S., Zuazua, E.: Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91, 20–48 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  20. Fabiano, R.H.: Stability preserving Galerkin approximations for a boundary damped wave equation. Nonlinear Anal. 47, 4545–4556 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gatti, S., Pata, V.: A one-dimensional wave equation with nonlinear damping. Glasgow Math. J. 48, 419–430 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gearhart, L.: Spectral theory for contraction semigroups on hilbert space. Trans. Am. Math. Soc. 236, 385–394 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Geveci, T.: On the application of mixed finite element methods to the wave equations. RAIRO Model. Math. Anal. Numer. 22, 243–250 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Göttlich, S., Herty, M., Schillen, P.: Electric transmission lines: control and numerical discretization. Optim. Control Appl. Methods 37, 980–995 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Günther, M., Feldmann, W., ter Maten, J.: Modelling and discretization of circuit problems. In: Ciarlet, P.G. (ed.) Handbook of Numerical Analysis. vol. XIII, pp. 523–659. Elsevier, Amsterdam (2005)

  26. Huang, F.: Characteristic conditions for exponential stability of linear dynamical systems in hilbert spaces. Ann. Differ. Equ. 1, 43–56 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Lagnese, J.: Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differ. Equ. 50, 163–182 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lagnese, L.E., Leugering, G., Schmidt, E.J.P.G.: Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures. Systems and Control: Foundations and Applications. Springer, New York (1994)

    MATH  Google Scholar 

  29. Mehmeti, F.A., von Below, J., Nicaise, S. (eds.): Partial Differential Equations on Multistructures. Marcel Dekker Inc, New York (2001)

    MATH  Google Scholar 

  30. Mugnolo, D.: Semigroup Methods for Evolution Equations on Networks. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  31. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  32. Prüss, J.: On the spectrum of \(c_0\)-semigroups. Trans. Am. Math. Soc. 284, 847–857 (1984)

    Article  MATH  Google Scholar 

  33. Ramdani, M.T.K., Takahashi, T.: Uniformly exponentially stable approximations for a class of second order evolution equations. ESAIM Control Optim. Calculus Var. 13, 503–527 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Ind. Univ. Math. J. 24, 79–86 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rincon, M.A., Copetti, M.I.M.: Numerical analysis for a locally damped wave equation. J. Appl. Anal. Comput. 3, 169–182 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  37. Tebou, L.R.T., Zuazua, E.: Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95, 563–598 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Valein, J., Zuazua, E.: Stabilization of the wave equation on 1-D networks. SIAM J. Control Optim. 48, 2771–2797 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Varga, R.S.: Functional Analysis and Approximation Theory in Numerical Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1971)

    Book  MATH  Google Scholar 

  40. Wheeler, M.F.: A priori \({L_2}\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, G.Q., Liu, D.Y., Liu, Y.Q.: Abstract second order hyperbolic system and applications to controlled network of strings. SIAM J. Control Optim. 47, 1762–1784 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zuazua, E.: Stability and decay for a class of nonlinear hyperbolic problems. Asymptot. Anal. 1, 161–185 (1988)

    MathSciNet  MATH  Google Scholar 

  43. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 42, 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support by the German Research Foundation (DFG) via Grants IRTG 1529 and TRR 154 subproject C04, and by the “Excellence Initiative” of the German Federal and State Governments via the Graduate School of Computational Engineering GSC 233 at Technische Universität Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Egger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egger, H., Kugler, T. Damped wave systems on networks: exponential stability and uniform approximations. Numer. Math. 138, 839–867 (2018). https://doi.org/10.1007/s00211-017-0924-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0924-4

Mathematics Subject Classification

Navigation