Skip to main content

Advertisement

Log in

The antiarrhythmic dipeptide ZP1609 (danegaptide) when given at reperfusion reduces myocardial infarct size in pigs

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Connexin 43 is located in the cardiomyocyte sarcolemma and in the mitochondrial membrane. Sarcolemmal connexin 43 contributes to the spread of myocardial ischemia/reperfusion injury, whereas mitochondrial connexin 43 contributes to cardioprotection. We have now investigated the antiarrhythmic dipeptide ZP1609 (danegaptide), which is an analog of the connexin 43 targeting antiarrhythmic peptide rotigaptide (ZP123), in an established and clinically relevant experimental model of ischemia/reperfusion in pigs. Pigs were subjected to 60 min coronary occlusion and 3 h reperfusion. ZP1609 (n = 10) was given 10 min prior to reperfusion (75 μg/kg b.w. bolus i.v. + 57 μg/kg/min i.v. infusion for 3 h). Immediate full reperfusion (IFR, n = 9) served as control. Ischemic postconditioning (PoCo, n = 9; 1 min LAD reocclusion after 1 min reperfusion; four repetitions) was used as a positive control of cardioprotection. Infarct size (TTC) was determined as the end point of cardioprotection. Systemic hemodynamics and regional myocardial blood flow during ischemia were not different between groups. PoCo and ZP1609 reduced infarct size vs. IFR (IFR, 46 ± 4 % of area at risk; mean ± SEM; PoCo, 31 ± 4 %; ZP1609, 25 ± 5 %; both p < 0.05 vs. IFR; ANOVA). There were only few arrhythmias during reperfusion such that no antiarrhythmic action of ZP1609 was observed. ZP1609 when given before reperfusion reduces infarct size to a similar extent as ischemic postconditioning. Further studies are necessary to define the mechanism/action of ZP1609 on connexin 43 in cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou N-H, Andersen S, Jensen ON, Hennan JK, Kjolbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin43: a possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol 40:790–798

    Article  PubMed  CAS  Google Scholar 

  • Bell R, Beeuwkes R, Botker HE, Davidson S, Downey J, Garcia-Dorado D, Hausenloy DJ, Heusch G, Ibanez B, Kitakaze M, Lecour S, Mentzer R, Miura T, Opie L, Ovize M, Ruiz-Meana M, Schulz R, Shannon R, Walker M, Vinten-Johansen J, Yellon D (2012) Trials, tribulations and speculation! Report from the 7th Biennial Hatter Cardiovascular Institute Workshop. Basic Res Cardiol 107:300

    Article  PubMed  Google Scholar 

  • Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Maena M, Gres P, Konietzka I, Lopez-Iglesias C, García-Dorado D, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244

    Article  PubMed  CAS  Google Scholar 

  • Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785

    Article  PubMed  CAS  Google Scholar 

  • Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147

    Article  PubMed  CAS  Google Scholar 

  • Butera JA, Larsen BD, Hennan JK, Kerns E, Di L, Alimardanov A, Swillo RE, Morgan GA, Liu K, Wang Q, Rossman EI, Unwalla R, McDonald L, Huselton C, Petersen JS (2009) Discovery of (2S,4R)-1-(2-aminoacetyl)-4-benzamidopyrrolidine-2-carboxylic acid hydrochloride (GAP-134)13, an orally active small molecule gap-junction modifier for the treatment of atrial fibrillation. J Med Chem 52:908–911

    Article  PubMed  CAS  Google Scholar 

  • Clarke TC, Thomas D, Petersen JS, Evans WH, Martin PEM (2006) The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43. Br J Pharmacol 147:486–495

    Article  PubMed  CAS  Google Scholar 

  • Cohen MV, Yang X-M, Downey JM (2006) Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovasc Res 70:231–239

    Article  PubMed  CAS  Google Scholar 

  • De Vuyst E, Boengler K, Antoons G, Sipido KR, Schulz R, Leybaert L (2011) Pharmacological modulation of connexin-formed channels in cardiac pathophysiology. Br J Pharmacol 163:469–483

    Article  PubMed  Google Scholar 

  • Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59:418–458

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Dorado D, Inserte J, Ruiz-Meana M, Gonzalez MA, Solares J, Julia M, Barrabés JA, Soler-Soler J (1997) Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation 96:3579–3586

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Dorado D, Ruiz-Meana M (2000) Propagation of cell death during myocardial reperfusion. News Physiol Sci 15:326–330

    PubMed  Google Scholar 

  • Hagen A, Dietze A, Dhein S (2009) Human cardiac gap-junction coupling: effects of antiarrhythmic peptide AAP10. Cardiovasc Res 83:405–415

    Article  PubMed  CAS  Google Scholar 

  • Haugan K, Marcussen N, Kjolbye AL, Nielsen MS, Hennan JK, Petersen JS (2006a) Treatment with the gap junction modifier rotigaptide (ZP123) reduces infarct size in rats with chronic myocardial infarction. J Cardiovasc Pharmacol 47:236–242

    Article  PubMed  CAS  Google Scholar 

  • Haugan K, Miyamoto T, Takeishi Y, Kubota I, Nakayama J, Shimojo H, Hirose M (2006b) Rotigaptide (ZP123) improves atrial conduction slowing in chronic volume overload-induced dilated atria. Basic Clin Pharmacol Toxicol 99:71–79

    Article  PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686

    Article  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61:448–460

    Article  PubMed  CAS  Google Scholar 

  • Hawat G, Helie P, Baroudi G (2012) Single intravenous low-dose injections of connexin 43 mimetic peptides protect ischemic heart in vivo against myocardial infarction. J Mol Cell Cardiol 53:559–566

    Article  PubMed  CAS  Google Scholar 

  • Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586

    Article  PubMed  CAS  Google Scholar 

  • Hennan JK, Swillo RE, Morgan GA, Keith JRJ, Schaub RG, Smith RP, Feldman HS, Haugan K, Kantrowitz J, Wang PJ, Abu-Qare A, Butera J, Larsen BD, Crandall DL (2006) Rotigaptide (ZP123) prevents spontaneous ventricular arrhythmias and reduces infarct size during myocardial ischemia/reperfusion injury in open-chest dogs. J Pharmacol and Exper Therapeu 317:236–243

    Article  CAS  Google Scholar 

  • Hennan JK, Swillo RE, Morgan GA, Rossman EI, Kantrowitz J, Butera J, Petersen JS, Gardell SJ, Vlasuk GP (2009) GAP-134 ([2S,4R]-1-[2-aminoacetyl]4-benzamidopyrrolidine-2-carboxylic acid) prevents spontaneous ventricular arrhythmias and reduces infarct size during myocardial ischemia/reperfusion injury in open-chest dogs. J Cardiovasc Pharmacol Ther 14:207–214

    Article  PubMed  CAS  Google Scholar 

  • Heusch G (2004) Postconditioning. Old wine in a new bottle. J Am Coll Cardiol 44:1111–1112

    Article  PubMed  Google Scholar 

  • Heusch G (2012) Reduction of infarct size by ischaemic post-conditioning in humans: fact or fiction. Eur Heart J 33:13–15

    Article  PubMed  Google Scholar 

  • Heusch G (2013) Cardioprotection—chances and challenges of its translation to the clinic. Lancet 381:166–175

    Article  PubMed  Google Scholar 

  • Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919

    Article  PubMed  Google Scholar 

  • Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol 105:151–154

    Article  PubMed  Google Scholar 

  • Heusch G, Büchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356

    Article  PubMed  CAS  Google Scholar 

  • Heusch G, Musiolik J, Gedik N, Skyschally A (2011a) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308

    Article  PubMed  CAS  Google Scholar 

  • Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M (2012) STAT5 activation and cardioprotection by remote ischemic preconditioning in humans. Circ Res 110:111–115

    Article  PubMed  CAS  Google Scholar 

  • Heusch G, Skyschally A, Schulz R (2011b) The in-situ pig heart with regional ischemia/reperfusion—ready for translation. J Mol Cell Cardiol 50:951–963

    Article  PubMed  CAS  Google Scholar 

  • Jozwiak J, Dhein S (2008) Local effects and mechanisms of antiarrhythmic peptide AAP10 in acute regional myocardial ischemia: electrophysiological and molecular findings. Naunyn Schmiedebergs Arch Pharmacol 378:459–470

    Article  PubMed  CAS  Google Scholar 

  • Kjolbye AL, Haugan K, Hennan JK, Petersen JS (2007) Pharmacological modulation of gap junction function with the novel compound rotigaptide: a promising new principle for prevention of arrhythmias. Basic Clin Pharmacol Toxicol 101:215–230

    Article  PubMed  Google Scholar 

  • Kottenberg E, Thielmann M, Bergmann L, Heine T, Jakob H, Heusch G, Peters J (2012) Protection by remote ischaemic preconditioning during coronary artery bypass grafting with isoflurane but not with propofol anesthesia—a clinical trial. Acta Anaesthesiol Scand 56:30–38

    Article  PubMed  CAS  Google Scholar 

  • Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G (1991) Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83:974–982

    Article  PubMed  CAS  Google Scholar 

  • Lacerda L, Somers S, Opie HL, Lecour S (2009) Ischemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84:201–208

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Leong-Poi H, Mangat I, Moe GW, Hu X, So PP, Tarulli E, Ramadeen A, Rossman EI, Hennan JK, Dorian P (2009) Effects of chronic gap junction conduction-enhancing antiarrhythmic peptide GAP-134 administration on experimental atrial fibrillation in dogs. Circ Arrhythm Electrophysiol 2:171–178

    Article  PubMed  CAS  Google Scholar 

  • Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-a activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 112:3911–3918

    Article  PubMed  CAS  Google Scholar 

  • Li X, Heinzel FR, Boengler K, Schulz R, Heusch G (2004) Role of connexin 43 in ischemic preconditioning does not involve intercellular communications through gap junctions. J Mol Cell Cardiol 36:161–163

    Article  PubMed  CAS  Google Scholar 

  • McFalls EO, Araujo LI, Lammertsma A, Rhodes CG, Bloomfield P, Pupita G, Jones T, Maseri A (1993) Vasodilator reserve in collateral-dependent myocardium as measured by positron emission tomography. Eur Heart J 14:336–343

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Schaefer T, Linke W, Tudyka T, Gottwald M, Klaus W, Dhein S (1997) Actions of the antiarrhythmic peptide AAP10 on intercellular coupling. Naunyn Schmiedebergs Arch Pharmacol 356:76–82

    Article  PubMed  Google Scholar 

  • Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand. Cardiovasc Res 87:406–423

    Article  PubMed  CAS  Google Scholar 

  • Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, Andre-Fouet X, Revel D, Kirkorian G, Monassier J-P, Derumeaux G, Ovize M (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481

    Article  PubMed  CAS  Google Scholar 

  • Pogwizd SM (2003) Prevention of ischemia-induced reentrant ventricular arrhythmias by a peptide that enhances gap junctional conductance. J Cardiovasc Electrophysiol 14:521–523

    Article  PubMed  Google Scholar 

  • Post F, Giannitsis E, Riemer T, Maier LS, Schmitt C, Schumacher B, Heusch G, Mudra H, Voigtlander T, Erbel R, Darius H, Katus H, Hamm C, Senges J, Gori T, Munzel T (2012) Pre- and early in-hospital procedures in patients with acute coronary syndromes: first results of the "German chest pain unit registry". Clin Res Cardiol 101:983–991

    Article  PubMed  Google Scholar 

  • Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isoosmotic volume regulation. J Cell Biol 148:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Rossman EI, Liu K, Morgan GA, Swillo RE, Krueger JA, Gardell SJ, Butera J, Gruver M, Kantrowitz J, Feldman HS, Petersen JS, Haugan K, Hennan JK (2009) The gap junction modifier, GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], improves conduction and reduces atrial fibrillation/flutter in the canine sterile pericarditis model. J Pharmacol Exp Ther 329:1127–1133

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Meana M, Garcia-Dorado D, Hofstaetter B, Piper HM, Soler-Soler J (1999) Propagation of cardiomyocyte hypercontracture by passage of Na+ through gap junctions. Circ Res 85:280–287

    Article  PubMed  CAS  Google Scholar 

  • Sasayama S (1994) Effect of coronary collateral circulation on myocardial ischemia and ventricular dysfunction. Cardiovasc Drugs Ther 8:327–334

    Article  PubMed  Google Scholar 

  • Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266

    Article  PubMed  CAS  Google Scholar 

  • Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357

    PubMed  CAS  Google Scholar 

  • Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G (2002) No ischemic preconditioning in heterozygous connexin43-deficient mice. Am J Physiol Heart Circ Physiol 283:H1740–H1742

    PubMed  CAS  Google Scholar 

  • Schwartz Longacre L, Kloner RA, Arai AE, Baines CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Van der Heide RS, Vinten-Johansen J, Yellon DM (2011) New horizons in cardioprotection: recommendations from the 2010 National Heart, Lung, and Blood Institute Workshop. Circulation 124:1172–1179

    Article  PubMed  Google Scholar 

  • Shintani-Ishida K, Uemura K, Yoshida K (2007) Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293:H1714–H1720

    Article  PubMed  CAS  Google Scholar 

  • Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-a in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146

    Article  PubMed  CAS  Google Scholar 

  • Skyschally A, Schulz R, Heusch G (2010) Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther 24:85–87

    Article  PubMed  Google Scholar 

  • Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009a) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18

    Article  PubMed  CAS  Google Scholar 

  • Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009b) Ischemic postconditioning—experimental models and protocol algorithms. Basic Res Cardiol 104:469–483

    Article  PubMed  Google Scholar 

  • Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419:261–272

    Article  PubMed  CAS  Google Scholar 

  • Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L'Huillier I, Aupetit J-F, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M (2005) Postconditioning the human heart. Circulation 112:2143–2148

    Article  PubMed  Google Scholar 

  • Thielmann M, Kottenberg E, Boengler K, Raffelsieper C, Neuhaeuser M, Peters J, Jakob H, Heusch G (2010) Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with crystalloid cardioplegic arrest. Basic Res Cardiol 105:657–664

    Article  PubMed  CAS  Google Scholar 

  • Thuny F, Lairez O, Roubille F, Mewton N, Rioufol G, Sportouch C, Sanchez I, Bergerot C, Thibault H, Cung TT, Finet G, Argaud L, Revel D, Derumeaux G, Bonnefoy-Cudraz E, Elbaz M, Piot C, Ovize M, Croisille P (2012) Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 59:2175–2181

    Article  PubMed  Google Scholar 

  • Wang N, De Bock M, Antoons G, Gadicherla AK, Bol M, Decrock E, Evans WH, Sipido KR, Bukauskas FF, Leybaert L (2012) Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res Cardiol 107:304

    Article  PubMed  CAS  Google Scholar 

  • Wang N, De Vuyst E, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, Lai CP, De BM, Decrock E, Bol M, Vinken M, Rogiers V, Tavernier J, Evans WH, Naus CC, Bukauskas FF, Sipido KR, Heusch G, Schulz R, Bultynck G, Leybaert L (2013) Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol 108:309

    Article  PubMed  Google Scholar 

  • Weng S, Lauven M, Schaefer T, Polontchouk L, Grover R, Dhein S (2002) Pharmacological modification of gap junction coupling by an antiarrhythmic peptide via protein kinase C activation. FASEB J 16:1114–1116

    PubMed  CAS  Google Scholar 

  • Xing D, Kjolbye AL, Nielsen MS, Petersen JS, Harlow KW, Holstein-Rathlou NH, Martins JB (2003) ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs. J Cardiovasc Electrophysiol 14:510–520

    Article  PubMed  Google Scholar 

  • Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z-Q, Corvera JS, Halkos ME, Kerendi F, Wang N-P, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588

    PubMed  CAS  Google Scholar 

  • Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, Gregoratos G, Klein G, Moss AJ, Myerburg RJ, Priori SG, Quinones MA, Roden DM, Silka MJ, Tracy C, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo JL, Zamorano JL, Smith SC Jr, Jacobs AK, Adams CD, Antman EM, Anderson JL, Hunt SA, Halperin JL, Nishimura R, Ornato JP, Page RL, Riegel B (2006) ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Europace 8:746–837

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by a grant from Zealand Pharma, Copenhagen, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Heusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skyschally, A., Walter, B., Schultz Hansen, R. et al. The antiarrhythmic dipeptide ZP1609 (danegaptide) when given at reperfusion reduces myocardial infarct size in pigs. Naunyn-Schmiedeberg's Arch Pharmacol 386, 383–391 (2013). https://doi.org/10.1007/s00210-013-0840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0840-9

Keywords

Navigation