Skip to main content
Log in

On the geometry of the slice of trace-free \({{SL_2(\mathbb{C})}}\)-characters of a knot group

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let K be a knot in an integral homology 3-sphere Σ with exterior E K , and let B 2 denote the two-fold branched cover of Σ branched along K. We construct a map Φ from the slice of trace-free \({{{\rm SL}_2(\mathbb{C})}}\) -characters of π 1(E K ) to the \({{{\rm SL}_2(\mathbb{C})}}\)-character variety of π 1(B 2). When this map is surjective, it describes the slice as the two-fold branched cover over the \({{{\rm SL}_2(\mathbb{C})}}\)-character variety of B 2 with branched locus given by the abelian characters, whose preimage is precisely the set of metabelian characters. We show that each metabelian character can be represented as the character of a binary dihedral representation of π 1(E K ). The map Φ is shown to be surjective for all 2-bridge knots and all pretzel knots of type (p, q, r). An extension of this framework to n-fold branched covers is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbulut S., McCarthy J.D.: Casson’s Invariant for Oriented Homology 3-Spheres: An Exposition. Mathematical Notes, vol. 36. Princeton University Press, NJ (1990)

    Google Scholar 

  2. Boden H., Friedl S.: Metabelian \({{\rm {SL}}(n, \mathbb{C})}\) representations of knot groups. Pac. J. Math. 238, 7–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyer S., Zhang X.: On Culler-Shalen seminorms and Dehn filling. Ann. Math. 148(2), 737–801 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burde G.: Darstellungen von Knotengruppen. Math. Ann. 173, 24–33 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burde G.: SU(2)-representation spaces for two-bridge knot groups. Math. Ann. 288, 103–119 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burde G., Zieschang H.: Knots. Walter de Gruyter & Co., Berlin (2003)

    MATH  Google Scholar 

  7. Collin O., Saveliev N.: Equivariant Casson invariants via gauge theory. J. Reine Angew. Math. 541, 143– (2001)

    MathSciNet  MATH  Google Scholar 

  8. Cooper D., Culler M., Gillett H., Long D., Shalen P.: Plane curves associated to character varieties of knot complements. Invent. Math. 118, 47–84 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Culler M., Shalen P.: Varieties of group representations and splittings of 3-manifolds. Ann. Math. 117, 109–146 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Rham G.: Introduction aux polynômes d’un nô ud. Enseign. Math. 13(2), 187–194 (1967)

    MATH  Google Scholar 

  11. Herald C.: Flat connections, the Alexander invariant, and Casson’s invariant. Commun. Anal. Geom. 5, 93–120 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Heusener M., Kroll J.: Deforming abelian SU(2)-representations of knot groups. Comment. Math. Helv. 73, 480–498 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heusener M., Porti J., Suárez E.: Deformations of reducible representations of 3-manifold groups into \({{\rm SL}_2({\mathbb C})}\). J. Reine Angew. Math. 530, 191–227 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Klassen E.: Representations of knot groups in SU(2). Trans. Am. Math. Soc. 326, 795–828 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Lickorish W.B.R.: An Introduction to Knot Theory. Graduate Texts in Mathematics, vol. 175. Springer, New York (1997)

    Google Scholar 

  16. Lin X.S.: A knot invariant via representation spaces. J. Differ. Geom. 35, 337–357 (1992)

    MATH  Google Scholar 

  17. Lin X.S.: Representations of knot groups and twisted Alexander polynomials. Acta Math. Sin. (Engl. Ser.) 17, 361–380 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nagasato F.: Finiteness of a section of the \({{\rm SL}(2,{\mathbb C})}\)-character variety of knot groups. Kobe J. Math. 24, 125–136 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Ozsváth P., Szabó Z.: Holomorphic disks and topological invariants for closed three-manifolds. Ann. Math. 159(2), 1027–1158 (2004)

    Article  MATH  Google Scholar 

  20. Porti J., Heusener M.: The variety of characters in \({{\rm PSL}(2, \mathbb{C})}\). Bol. Soc. Mat. Mex. 10, 221–237 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Riley R.: Nonabelian representations of 2-bridge knot groups. Q. J. Math. Oxf. Ser. 35(2), 191–208 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rolfsen D.: Knots and Links. AMS Chelsea Publishing, AMS (1990)

    MATH  Google Scholar 

  23. Saveliev N.: Lectures on the Topology of 3-Manifolds. de Gruyter Textbook. Walter de Gruyter & Co., Berlin (1999)

    Book  Google Scholar 

  24. Saveliev N.: Representation spaces of Seifert fibered homology spheres. Topol. Appl. 126, 49–61 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Yamaguchi.

Additional information

F. Nagasato had been partially supported by JSPS Research Fellowships for Young Scientists and the Grant-in-Aid for Young Scientists (Start-up). Y. Yamaguchi had been partially supported by the twenty-first century COE program at Graduate School of Mathematical Sciences, University of Tokyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasato, F., Yamaguchi, Y. On the geometry of the slice of trace-free \({{SL_2(\mathbb{C})}}\)-characters of a knot group. Math. Ann. 354, 967–1002 (2012). https://doi.org/10.1007/s00208-011-0754-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0754-0

Mathematics Subject Classification (2000)

Navigation