Skip to main content
Log in

A Parabolic Free Boundary Problem Modeling Electrostatic MEMS

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The evolution problem for a membrane based model of an electrostatically actuated microelectromechanical system is studied. The model describes the dynamics of the membrane displacement and the electric potential. The latter is a harmonic function in an angular domain, the deformable membrane being a part of the boundary. The former solves a heat equation with a right-hand side that depends on the square of the trace of the gradient of the electric potential on the membrane. The resulting free boundary problem is shown to be well-posed locally in time. Furthermore, solutions corresponding to small voltage values exist globally in time, while global existence is shown not to hold for high voltage values. It is also proven that, for small voltage values, there is an asymptotically stable steady-state solution. Finally, the small aspect ratio limit is rigorously justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Multiplication in Sobolev and Besov spaces. In: Nonlinear Analysis, Scuola Norm. Sup. di Pisa Quaderni, pp. 27–50. Scuola Norm. Sup., Pisa (1991)

  2. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function Spaces, Differential Operators and Nonlinear Analysis. (Eds. Schmeisser H. and Triebel H.) Teubner-Texte zur Math., Vol. 133. Teubner, Stuttgart, 9–126, 1993

  3. Amann, H.: Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory. Birkhäuser, Basel, 1995

  4. Bernstein, D.H., Guidotti, P., Pelesko, J.A.: Analytical and numerical analysis of electrostatically actuated MEMS devices. Proceedings of Modeling and Simulation of Microsystems 2000, San Diego, pp. 489–492, 2000

  5. Cimatti G.: A free boundary problem in the theory of electrically actuated microdevices. Appl. Math. Lett. 20, 1232–1236 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Esposito, P., Ghoussoub, N., Guo, Y.: Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Volume 20 of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York, 2010

  7. Flores, G., Mercado, G., Pelesko, J.A.: Dynamics and touchdown in electrostatic MEMS. Proceedings of IDETC/CIE 2003, 19th ASME Biennal Conf. on Mechanical Vibration and Noise, pp. 1–8, 2003

  8. Flores, G., Mercado, G., Pelesko, J.A., Smyth, N.: Analysis of the dynamics and touchdown in a model of electrostatic MEMS. SIAM J. Appl. Math. 67(2), 434–446 (2006/2007) (electronic)

    Google Scholar 

  9. Ghoussoub, N., Guo, Y.: On the partial differential equations of electrostatic MEMS devices: stationary case. SIAM J. Math. Anal. 38(5):1423–1449 (2006/2007) (electronic).

    Google Scholar 

  10. Ghoussoub N., Guo Y.: On the partial differential equations of electrostatic MEMS devices. II. Dynamic case. NoDEA Nonlinear Differ. Equ. Appl. 15(1–2), 115–145 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin, 2001 (reprint of the 1998 edition)

  12. Grisvard P.: Équations différentielles abstraites. Ann. Sci. École Norm. Sup. 4, 311–395 (1969)

    MathSciNet  Google Scholar 

  13. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, 1985

  14. Guo Y.: Global solutions of singular parabolic equations arising from electrostatic MEMS. J. Differ. Equ. 245(3), 809–844 (2008)

    Article  ADS  MATH  Google Scholar 

  15. Guo Y.: On the partial differential equations of electrostatic MEMS devices. III. Refined touchdown behavior. J. Differ. Equ. 244(9), 2277–2309 (2008)

    Article  ADS  MATH  Google Scholar 

  16. Guo Y.: Dynamical solutions of singular wave equations modeling electrostatic MEMS. SIAM J. Appl. Dyn. Syst. 9(4), 1135–1163 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guo J.-S., Hu B., Wang C.-J.: A nonlocal quenching problem arising in a micro-electro mechanical system. Q. Appl. Math. 67(4), 725–734 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Guo Y., Pan Z., Ward M.J.: Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties. SIAM J. Appl. Math. 66(1), 309–338 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hui K.M.: The existence and dynamic properties of a parabolic nonlocal MEMS equation. Nonlinear Anal. 74(1), 298–316 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kavallaris N.I., Lacey A.A., Nikolopoulos C.V., Tzanetis D.E.: A hyperbolic non-local problem modelling MEMS technology. Rocky Mt. J. Math. 41(2), 505–534 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York, 1968

  22. Laurençot Ph., Walker Ch.: A stationary free boundary problem modeling electrostatic MEMS. Arch. Ration. Mech. Anal. 207, 139–158 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lin F., Yang Y.: Nonlinear non-local elliptic equation modelling electrostatic actuation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2081), 1323–1337 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications, Vol. 16. Birkhäuser Verlag, Basel, 1995

  25. Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Masson et Cie, Editeurs, Paris, 1967

  26. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa. 3(13), 115–162 (1959)

    MathSciNet  Google Scholar 

  27. Pelesko, J.A.: Mathematical modeling of electrostatic MEMS with tailored dielectric properties. SIAM J. Appl. Math. 62(3), 888–908 (2001/2002) (electronic)

  28. Pelesko, J.A., Bernstein, D.H. : Modeling MEMS and NEMS. Chapman & Hall/CRC, Boca Raton, 2003

  29. Pelesko J.A., Triolo A.A.: Nonlocal problems in MEMS device control. J. Eng. Math. 41(4), 345–366 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seeley R.: Interpolation in L p with boundary conditions. Stud. Math. 44, 47–60 (1972)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Laurençot.

Additional information

Communicated by C. Le Bris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escher, J., Laurençot, P. & Walker, C. A Parabolic Free Boundary Problem Modeling Electrostatic MEMS. Arch Rational Mech Anal 211, 389–417 (2014). https://doi.org/10.1007/s00205-013-0656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0656-2

Keywords

Navigation