Skip to main content
Log in

Membrane parallelism for discrete Morse theory applied to digital images

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we propose a bio-inspired membrane computational framework for constructing discrete Morse complexes for binary digital images. Our approach is based on the discrete Morse theory and we work with cubical complexes. As example, a parallel algorithm for computing homology groups of binary 3D digital images is designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In [13] Forman works with simplicial complexes, however the mathematical scaffolding provided by DMT can be settled with no change to finite cubical complexes.

  2. The reader is supposed to be familiar with concepts of Image Algebra. For a detailed text, see [31].

  3. Lemma 1 grants the identification of cubical cells in a cubical complex in \({\mathbb {R}}^k\) with \(k\)-tuples.

  4. Introduced in [25].

  5. In case of 2D images, \(B_\mathbf {i} = B_{i_1 i_2}\).

  6. CW complex in [13] and cubical complex in this paper.

References

  1. Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. Discrete Comput. Geom. 47(2), 347–377 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berciano, A., Molina-Abril, H., Real, P.: Searching high order invariants in computer imagery. Appl. Algebra Eng. Commun. Comput. 23(1–2), 17–28 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carnero, J., Díaz-Pernil, D., Gutiérrez-Naranjo, M.A.: Designing tissue-like P systems for image segmentation on parallel architectures. In: del Amor, M.A.M., Păun, Gh., de Mendoza, I.P.H., Romero-Campero, F.J., Cabrera, L.V. (eds.) Ninth Brainstorming Week on Membrane Computing, pp. 43–62. Fénix Editora, Sevilla, Spain (2011)

  4. Christinal, H.A., Díaz-Pernil, D., Real, P.: Segmentation in 2D and 3D image using tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.O. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Computer Science, vol. 5856, pp. 169–176 (2009)

  5. Christinal, H.A., Díaz-Pernil, D., Real, P.: Region-based segmentation of 2D and 3D images with tissue-like P systems. Pattern Recogn. Lett. 32(16), 2206–2212 (2011)

    Article  Google Scholar 

  6. Christinal, H.A., Díaz-Pernil, D., Real, P.: P systems and computational algebraic topology. Math. Comput. Model. 52(11–12), 1982–1996 (2010)

    Article  MATH  Google Scholar 

  7. Cazals, F., Chazal, F., Lewiner, T.: In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 351–360. ACM (2003)

  8. Díaz-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A., Real, P.: Using membrane computing for effective homology. Appl. Algebra Eng. Commun. Comput. 23(5–6), 233–249 (2012)

    Article  MATH  Google Scholar 

  9. Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P.: Designing a new software tool for digital imagery based on P systems. Nat. Comput. 11(3), 381–386 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear-time tissue P system based solution for the 3-coloring problem. Electr. Notes Theor. Comput. Sci. 171(2), 81–93 (2007)

    Article  Google Scholar 

  11. Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving subset sum in linear time by using tissue P systems with cell division. In: Mira, J., Álvarez, J.R. (eds.) IWINAC (1). Lecture Notes in Computer Science, vol. 4527, pp. 170–179 (2007)

  12. Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Real, P., Sánchez-Canales, V.: Computing homology groups in binary 2D imagery by tissue-like P systems. Roman. J. Inf. Sci. Technol. 13(2), 141–152 (2010)

    Google Scholar 

  13. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gunther, D., Reininghaus, J., Hotz, I., Wagner, H.: Memory-efficient computation of persistent homology for 3D images using discrete morse theory. In: 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images (Sibgrapi), pp. 25–32 (2011)

  15. Gyulassy, A., Bremer, P.T., Hamann, B., Pascucci, V.: A practical approach to Morse–Smale complex computation: scalability and generality. IEEE Trans. Vis. Comput. Graph. 14(6), 1619–1626 (2008)

    Article  Google Scholar 

  16. Kaczyński, T., Mischaikow, K., Mrozek, M.: Computational homology. Applied Mathematical Sciences. Springer, Berlin (2004)

  17. Lewiner, T., Lopes, H., Tavares, G.: Applications of Forman’s discrete Morse theory to topology visualization and mesh compression. IEEE Trans. Vis. Comput. Graph. 10(5), 499–508 (2004)

    Article  Google Scholar 

  18. Martín-Vide, C., Pazos, J., Păun, Gh., Rodríguez-Patón, A.: A new class of symbolic abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON. Lecture Notes in Computer Science, vol. 2387, pp. 290–299 (2002)

  19. Martín-Vide, C., Păun, Gh., Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theoret. Comput. Sci. 296(2), 295–326 (2003)

  20. Molina-Abril, H., Real, P.: Homological optimality in discrete Morse theory through chain homotopies. Pattern Recogn. Lett. 33(11), 1501–1506 (2012)

    Article  Google Scholar 

  21. Molina-Abril, H., Real, P.: Homological spanning forest framework for 2D image analysis. Ann. Math. Artif. Intell. 64(4), 385–409 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nithin, S., Vijay, N.: Parallel computation of 3D Morse–Smale complexes. Comput. Graph. Forum 31(3), 965–974 (2012)

    Google Scholar 

  23. Peña-Cantillana, F., Díaz-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A.: A parallel implementation of the thresholding problem by using tissue-like P systems. In: Real, P., Díaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W.G. (eds.) CAIP (2). Lecture Notes in Computer Science, vol. 6855, pp. 277–284 (2011)

  24. Peña-Cantillana, F., Díaz-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A.: Implementation on CUDA of the smoothing problem with tissue-like P systems. Int. J. Nat. Comput. Res. 2(3), 25–34 (2011)

    Article  Google Scholar 

  25. Păun, A., Păun, Gh.: The power of communication: P systems with symport/antiport. New Gener. Comput. 20(3), 295–306 (2002)

  26. Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane computing: dP systems. Int. J. Comput. Commun. Control 5(2), 238–252 (2010)

    Google Scholar 

  27. Peterka, T., Ross, R., Gyulassy, A., Pascucci, V., Kendall, W., Shen, H.-W., Lee, T.-Y., Chaudhuri, A.: Scalable parallel building blocks for custom data analysis. 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 105–112 (2011)

  28. Real, P., Molina-Abril, H., Kropatsch, W.: Homological tree-based strategies for image analysis. Comput. Anal. Images Patterns (LNCS) 5702, 326–333 (2009)

    Article  Google Scholar 

  29. Reininghaus, J., Hotz, I.: Combinatorial 2d vector field topology extraction and simplification. In: Topological Methods in Data Analysis and Visualization, pp. 103–114. Springer, Berlin, Heidelberg (2011)

  30. Reininghaus, J., Lowen, C., Hotz, I.: Fast combinatorial vector field topology. IEEE Trans. Vis. Comput. Graph. 17(10), 1433–1443 (2011)

    Article  Google Scholar 

  31. Ritter, G.X., Wilson, J.N., Davidson, J.L.: Image algebra: an overview. Comput. Vis. Graph. Image Process. 49(3), 297–331 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Reina-Molina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reina-Molina, R., Díaz-Pernil, D., Real, P. et al. Membrane parallelism for discrete Morse theory applied to digital images. AAECC 26, 49–71 (2015). https://doi.org/10.1007/s00200-014-0246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-014-0246-z

Keywords

Navigation