Skip to main content

Advertisement

Log in

A method of error adjustment for marine gravity with application to Mean Dynamic Topography in the northern North Atlantic

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

International compilations of marine gravity, such as the International Gravity Bureau (BGI) contain tens of millions of point data. Lemoine et al. (The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861) chose not to include any marine gravity in the construction of the global gravity model EGM96. Instead they used synthetic anomalies derived from altimetry, so that no independent information about Mean Dynamic Topography (MDT) can be deduced. Software has been developed not only to identify and correct those aspects of marine gravity data that are unreliable, but to do so in a way that can be applied to very large, ocean-wide data sets. First, we select only straight-line parts of ship-tracks and fit each one with a high-degree series of Chebyshev polynomials, whose misfit standard deviation is σ line and measures the random error associated with point gravity data. Then, network adjustment determines how the gravity datum is offset for each survey. A free least squares adjustment minimises the gravity anomaly mismatch at line-crossing points, using σ line to weight the estimate for each line. For a long, well crossed survey, the instrumental drift rate is also adjusted. For some 42,000 cross-over points in the northern Atlantic Ocean, network adjustment reduces the unweighted standard deviation of the cross-over errors from 4.03 to 1.58 mGal; when quality weighted, the statistic reduces from 1.32 to 0.39 mGal. The geodetic MDT is calculated combining the adjusted gravity anomalies and satellite altimetry, and a priori global ocean model through a new algorithm called the Iterative Combination Method. This paper reports a first demonstration that geodetic oceanography can characterise the details of basin wide ocean circulation with a resolution better than global ocean circulation models. The result matches regional models of ocean circulation from hydrography measurements (Geophys Res Lett 29:1896, 2002; J Geophys Res 108:3251, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjaout A, Sarrailh M (1997) A new gravity map, a new marine geoid around Japan and the detection of the Kurosho current. J Geod 71: 725–735

    Article  Google Scholar 

  • Andersen OB, Knudsen P (1998) Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J Geophys Res 103(C4): 8129–8137

    Article  Google Scholar 

  • Andersen OB, Knudsen P, Kenyon S, Trimmer, R (2003) KMS2002 Global marine gravity field, bathymetry and mean sea surface. Poster, International Union of Geodesy and Geophysics General Assembly, Sapporo, Japan, June 30–July 11

  • Bell E, Watts AB (1986) Evaluation of BGM-3 sea gravity meter system onboard R/V Conrad. Geophysics 51(7): 1480–1493

    Article  Google Scholar 

  • Catalao J, Sevilla MJ (2004) Inner and minimum constraint adjustment of marine gravity data. Comput Geosci 30: 949–957

    Article  Google Scholar 

  • Chelton, DB, Ries JC, Haines BJ, Fu LL, Challahan PS (2001) In: Fu LL, Cazenave A (ed) Satellite altimetry and earth sciences. Academic Press, San Diego, pp 1–131

  • Denker H, Ronald M (2003) Compilation and evaluation of a consistent marine gravity data set surrounding Europe. Proc IUUG, Soporo, Japan, June 30–July 11

  • Drinkwater MR, Floberghagen R, Haagmans D, Muzi PA (2003) GOCE: ESA’s first Earth Explorer Core mission. Space Sci Rev 108: 419–432

    Article  Google Scholar 

  • Featherstone WE (2003) Comparison of different satellite altimetric-derived gravity anomaly grids with ship-borne gravity data around Australia. In: Tziavos IN (ed) Gravity and Geoid-3rd Meeting of the international Gravity and Geoid Commission, Greece, August 26–30, 2002

  • Forsberg R, Olesen A, Vest A, Solheim D, Hipkin R, Omang O, Knudsen P (2004) Gravity field improvements in the North Atlantic region for the GOCINA project. 2nd International GOCE user workshop. ESA, ESRIN, March 8–10

  • Golub G, van Loan C (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, London

    Google Scholar 

  • Hansen D, Poulain PM (1996) Quality control and interpolations of WOCE-TOGA drifter data. J Atmos Oceanic Technol 13: 900–909

    Article  Google Scholar 

  • Hipkin R, Haines K, Beggan C, Bingley R, Hernandez F, Holt J, Baker T (2004) The geoid EDIN2000 and mean sea surface topography around the British Isles. J Geophys Int 157: 565–577

    Article  Google Scholar 

  • Hwang C, Wang C, Lee L (2002) Adjustment of relative gravity measurements using weighted and datum free constraints. Comput Geosci 28(9): 1005–1015

    Article  Google Scholar 

  • Hipkin R, Hunegnaw A (2006) Mean dynamic topography by an iterative combination method. In: Knudsen P, et al. (eds) Proceedings of the workshop: GOCINA: IMproving modelling of ocean transport and climate prediction in the North Atlantic region using GOCE gravimetry, Cah Cent Eur Geod Seismol, 25, pp 135–140

  • Johannessen JA, Balmino G, Le Provost C, Rummel R, Sabadini R, Sunkel H, Tscherning CC, Visser P, Woodworth P, Hughes C, LeGrand P, Sneeuw N, Perosanz F, Aguirre-Martinez M, Rebhan H, Drinkwater M (2003) The European gravity field and steady state ocean circulation explorer satellite mission: impact in geophysics. Surv Geophys 24: 339–386

    Article  Google Scholar 

  • Jakobsen PK, Ribergaard M, Quadasel D, Schmith T, Hughes CW (2003) Near-surface circulation in the northern North Atlantic as inferred from lagrangian drifters: Variability from the mesoscale to inter-annual. J Geophys Res 108(C8): 3251. doi:10.1029/2002JC001554

    Article  Google Scholar 

  • Lemoine F, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn, DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp, RH, Olson TR (1998) The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861

  • Matao H (1995) Marine gravity surveying line system adjustment. J Geod 70: 158–165

    Article  Google Scholar 

  • Niiler PP, Sybrandy A, Bi K, Poulain P, Bitterman D (1995) Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep Sea Res 42: 1951–1964

    Article  Google Scholar 

  • Niiler PP, Paduan JD (1995) motions in the northeast Pacific as measured by Lagrangian drifters. J Phys Oceanogr 25: 2819–2830

    Article  Google Scholar 

  • Niiler PP (2001) In: Church J, Siedler G, Gould J (eds) The world ocean surface circulation in ocean circulation and climate-observing and modelling the global ocean, pp. 193–204. Elsevier, New York

  • Nishimura CE, Forsyth DW (1988) Improvements in navigation using seabeam crossing errors. Mar Geophys Res 9: 333–352

    Article  Google Scholar 

  • Orvik KA, Niiler P (2002) Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas toward Arctic. Geophys Res Lett 29: 1896

    Article  Google Scholar 

  • Otto L, van Aken HM (1996) Surface circulation in the northeast Atlantic Ocean as observed with drifters. Deep Sea Res I 43: 467–499

    Article  Google Scholar 

  • Pickart RS (2000) Is Labrador Sea water formed in the Irmingar Sea?. WOCE Newsl 39: 6–8

    Google Scholar 

  • Press WP, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes in FORTRAN 90, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Reigber C, Schwintzer P, Neumayer KH, Barthelmes F, Konig R, Forste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Bruinsma S, Perosanz F, Fayard T (2003) The CHAMP-only Earth gravity field model EIGEN-2. Adv Space Res 31: 1883–1888

    Article  Google Scholar 

  • Rio MH, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys Res Oceans 109: C12032

    Article  Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res 102(B5): 10039–10054

    Article  Google Scholar 

  • Soltanpur A, Nahavandchi H, Ghazavi K (2007) Recovery of marine gravity anomalies from ERS1, ERS2 and ENVISAT satellite altimetry data for geoid computations over Norway. Stud Geophys Geod 51: 369–389

    Article  Google Scholar 

  • Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill CN, Marshall J (2002) Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J Geophys Res 107(C9): 3118. doi:10.1029/2001JC000888

    Article  Google Scholar 

  • StrangVan Hees GL (1983) Gravity Survey of the North Sea. Mar Geod 6(2): 167–182

    Article  Google Scholar 

  • Sybrandy AL, Niiler PP (1990) The WOCE/TOGA Lagrangian drifter construction manual. Scripps Institution of Oceanography, University of California, San Diego, Ref 91/6, WOCE Report Number, 63, 58 pp

  • Talwani M (1971) In: Maxwell A (ed) Gravity in the sea, vol 4, part 1. John Wiley, New York, pp 251–297

  • Tapley BD, Kim MC (2001) Application to Geodesy. In: Fu LL, Cazenave (eds) Satellite altimetry and earth sciences, Int. Geophys. Ser., vol 69. Academic Press, New York, pp 371–403

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683): 503–505

    Article  Google Scholar 

  • Torge W (1989) Gravimetry. De Gruyter, Berlin, New York

    Google Scholar 

  • Wenzel HG (1992) Sea gravity data adjustment with program SEAGRA. Bureau Gravimetrique International, Bulletin d’Information 71: 59–70

    Google Scholar 

  • Wessel P, Watts AB (1988) On the accuracy of marine gravity measurements. J Geophys Res 93(B1): 393–413

    Article  Google Scholar 

  • Wessel P (1989) XOVER: a cross-over error detector from track data. Comput Geosci 15(3): 333–346

    Article  Google Scholar 

  • Wessel P, Smith WHF (1995) New version of the Generic Mapping Tools released, EOS. Transactions of the American Geophysical Union 72(441): 445–446

    Google Scholar 

  • Wunsch C, Stammer D (1998) Satellite altimetery, the marine geoid and the oceanic general circulation. Annu Rev Earth Planet Sci 26: 219–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hunegnaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunegnaw, A., Hipkin, R.G. & Edwards, J. A method of error adjustment for marine gravity with application to Mean Dynamic Topography in the northern North Atlantic. J Geod 83, 161–174 (2009). https://doi.org/10.1007/s00190-008-0249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-008-0249-2

Keywords

Navigation