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Abstract We consider the “all guards move” model for the eternal dominating set
problem. A set of guards form a dominating set on a graph and at the beginning of
each round, a vertex not in the dominating set is attacked. To defend against the attack,
the guards move (each guard either passes or moves to a neighboring vertex) to form
a dominating set that includes the attacked vertex. The minimum number of guards
required to defend against any sequence of attacks is the “eternal domination number”
of the graph. In 2005, it was conjectured [Goddard et al. (J. Combin. Math. Combin.
Comput. 52:169–180, 2005)] there would be no advantage to allow multiple guards
to occupy the same vertex during a round. We show this is, in fact, false. We also
describe algorithms to determine the eternal domination number for both models for
eternal domination and examine the related combinatorial game, which makes use of
the reduced canonical form of games.
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1 Introduction

Surveillance cameras that monitor rooms in a building may form a dominating set,
but the cameras are in fixed locations. Soldiers that guard intersections may form
a dominating set, but they also may be required to move in order to respond to an
attack at a neighbouring intersection. The former is an example of the dominating
set problem, however, the latter is an example of a graph protection model. Since the
concept of graph protection was first formalized by Arquilla and Fredricksen (1995)
and further communicated byReVelle (1997), Stewart (1999), and ReVelle and Rosing
(2000), there have been many advances on the topic. We refer to a recent survey by
Klostermeyer and Mynhardt (2016) for more background and the state of the art of
graph protection. Onemodel of graph protection is the eternal dominating set problem.

In the “all guards move” model for the eternal dominating set problem, a set of
guards form a dominating set on a graph and then a vertex is attacked. In response, each
guardmay remainwhere he is ormove to a neighbouring vertexwith the collective goal
of forming a dominating set containing the attacked vertex. In accomplishing this goal,
the guards have defended against the attack. Thus, during each “round”, a vertex is
attacked and then the guardsmove to defend against the attack. The eternal domination
number of a graph G, denoted γ ∞

all (G), is the minimum number of guards required
to defend against any sequence of attacks. This parameter has also been denoted by
σm(G) (Goddard et al. 2005), γm(G) (Klostermeyer and MacGillivray 2009), and
γ ∞
m (G) (Klostermeyer and Mynhardt 2016). The γ ∞

all (G) notation, of which we make
use in this note, has been used more recently by Beaton et al. (2013) and Finbow et al.
(2015).

In 2005, Goddard et al. stated a series of open questions and conjectured that there
would be no advantage to allow multiple guards to be located at the same vertex in
any round in the “all-guards move” model. As a result, subsequent publications on the
eternal dominating set problem have defined the problem in such a way that at most
one guard can be located on a vertex in any round. A 2009 article by Klostermeyer
and MacGillivray stated the above conjecture as an open problem. In Sect. 2 we show
the conjecture to be false.

In the “1 guardmoves”model of the eternal dominating set problem, only one guard
may move in response to an attack during each round. In this model, the minimum
number of guards required to defend against any sequence of attacks on a graph G
is denoted γ ∞

1 (G). This notation was used by Klostermeyer and Mynhardt and we
use it to be consistent with the “all guards move” notation. [The notations σ1(G)

(Goddard et al. 2005) and γ∞(G) (Klostermeyer and MacGillivray 2009) have also
been used.] Burger et al. (2004) showed that there is no advantage to allow multiple
guards to be located at the same vertex in a given round in the “1 guard moves”
model. However, Goddard et al. (2005) asked about the complexity of the associated
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recognition and decision problems for the “1 guard moves” model and the “all guards
move” model. In Sect. 3, we describe algorithms to determine γ ∞

1 (G) and γ ∞
all (G)

in time O∗(8n). 1 We also describe an algorithm to determine the (all-guards move)
eternal domination number for the variant when multiple guards are permitted to
occupy the same vertex during a given round. In this case, the algorithm runs in time

O∗
(
( 818

√
3)n

)
(note 81

8

√
3 ≈ 17.54). In Sect. 4, we describe a combinatorial game

based on eternal domination, given a graph, a set of attackers, and a set of defenders.
For many situations a player would like to ignore the infinitesimal values since they
only determine the parity of the number ofmoves once the associated non-infinitesimal
value has reached zero. Grossman and Siegel (2009) showed that the idea of a simplest
game infinitely close to a given game, called the reduced canonical game, was well-
defined. The reduced canonical form can be useful in determining optimal play in
sums with other games. For the combinatorial game based on eternal domination, we
determine the reduced canonical form for the game, given a graph, a set of attackers,
and a set of defenders.

We conclude this section with formal definitions. Let G = (V, E) be a graph. A
dominating set of G is a subset of V whose closed neighbourhood is V . The smallest
cardinality of a dominating set is denoted γ (G) and is called the domination number
of G. Let Dq(G) be the set of all dominating sets of G which have cardinality q. Let
D, D′ ∈ Dq(G). We will say D can be transformed to D′ (or D transforms to D′) if
D = {v1, v2, . . . , vq}, D′ = {u1, u2, . . . , uq} and ui ∈ N [vi ] for i = 1, 2, . . . , q.

In the “eternal dominating set problem”, a defender is given q guards to protect the
graph from a series of attacks on vertices made by an attacker. An eternal dominating
family of G is a subset E ⊆ Dq(G) for some q so that for every D ∈ E and every
possible attack v ∈ V (G), there is a dominating set D′ ∈ E so that v ∈ D′ and
D transforms to D′. When the value of q in the above definition is known we will
refer to this family as an eternal dominating family with q guards and the minimum
such q is denoted γ ∞

all (G). A set D ∈ Dq(G) is an eternal dominating set if it is a
member of some eternal dominating family. Note that the set of all eternal dominating
sets of a particular cardinality is an eternal dominating family, provided the family is
non-empty.

2 Allowing multiple guards on a vertex during a given round

In this section, we disprove the conjecture of Goddard et al. (2005) that there is never
any advantage in allowing two or more guards to occupy the same vertex in the all-
guards move model. To avoid confusion, let γ ∞∗

all (G) denote the eternal domination
number for the variant in which multiple guards are permitted to occupy the same
vertices during each round. Clearly, the variant γ ∞∗

all forms a lower bound for γ ∞
all :

Observation 1 For any graph G, γ ∞∗
all (G) ≤ γ ∞

all (G).

1 The O∗-notation used here is similar to the O-notation but hides polynomial factors in the size of an
input instance. See Woeginger (2001) and Fomin and Kratsch (2010) for more on the O∗-notation and
exponential-time algorithms in general.
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Fig. 1 Graph H

Fig. 2 Graph Gk

Theorem 2 For every integer � ≥ 0, there is a graph G� such that γ ∞
all (G�) −

γ ∞∗
all (G�) ≥ �.

Proof Let H be the graph given in Fig. 1 and let k := � + 3. Form the graph Gk

as follows: the vertex set of Gk consists of the vertices of k copies of H (labeled
H1, H2, . . . , Hk) along with an additional vertex c . The edge set of Gk contains the
edges from each of the k copies of H , along with an edge between vertex c and the
degree 3 vertices in each copy of H . Graph Gk is illustrated in Fig. 2.

We first consider the traditional eternal dominating set problem on Gk , where each
vertex is occupied by at most one guard in a given round. Our first claim is that at the
end of each round (i.e. after the guards have moved), each copy of H must contain at
least two guards. For a contradiction, suppose that at the end of round t , Hi contains
only one guard g. In round t + 1, if a degree 2 vertex of Hi is attacked, then guard
g must move to that attacked vertex during round t + 1. However, this leaves at least
three vertices of degree 2 in Hi that are not dominated by g. Since all vertices must be
dominated after the guards have moved during round t + 1, a guard must move from
c to a vertex in Hi . However, regardless of which of the two vertices in Hi the guard
from c moves to, there will remain at least one vertex of degree 2 in Hi that is not
dominated. Therefore, at the end of every round, each copy of H must contain at least
two guards. Furthermore, 2k guards are not sufficient: consider an attack at vertex c
in Gk . Then a guard from Hj must move to c, leaving only one guard in Hj , which
cannot occur. Therefore, γ ∞

all (Gk) ≥ 2k + 1.
Certainly 2k + 1 guards suffice: initially, one guard occupies vertex c and for each

1 ≤ i ≤ k, one guard occupies the degree 6 vertex of Hi and one guard occupies a
different vertex of Hi . Certainly Gk is dominated by the vertices occupied by these
2k + 1 guards. Since vertex c is occupied by a guard, at each round, a vertex in a copy
of H is attacked. If a vertex in Hj is attacked, one guard moves from the degree 6
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vertex to the attacked vertex, and the other guard moves to the degree 6 vertex. Thus,
2k + 1 guards suffice to defend any sequence of attacks and γ ∞

all (Gk) = 2k + 1.
Suppose now that multiple guards are permitted to occupy the same vertices at the

end of a round. We first show γ ∞∗
all (Gk) ≤ k + 4: initially place two guards at c, one

guard at each of the two vertices of degree four in H1, one guard on any other vertex
of H1 and one guard at the vertex of degree 6 in each Hi (2 ≤ i ≤ k); such a degree
6 vertex is called the central vertex of Hi . Clearly, each vertex of Gk is dominated.
Suppose a vertex in Hi is attacked, i �= 1. The guard g at the central vertex of Hi

moves to the attacked vertex and two guards move from c to each of the two vertices
(of degree four) of Hi that are adjacent to c. The two guards in H1 adjacent to c move
to c (leaving two guards at c) and the remaining guard on H1 moves to the central
vertex of H1. No other guards move. We note the guards have responded to the attack
and, up to symmetry, have remained in the same position as the beginning of the round.

Instead of an attack in Hi , we consider an attack in H1. Let g be the guard in H1
that does not occupy a vertex adjacent to c. Let u and v be the two vertices in H1
adjacent to c. If the attacked vertex is the central vertex, g moves to the central vertex
and no other guard moves. Otherwise, the attacked vertex is adjacent to exactly one
of u, v, suppose v. The guard at v moves to the attacked vertex. If the vertex occupied
by g is adjacent to v, then g moves to v and no other guard moves. Otherwise, the
vertex occupied by g is adjacent to u, but not v. In this case, g moves to u, the guard
at u moves to c, and a guard at c moves to v; no other guard moves. In H1, the new
configuration of guards has again 2 guards on the neighbors of c and one guard on
another vertex of H1. The guards have responded to the attack and, up to symmetry,
have remained in the same position. We conclude that k + 4 guards can respond to
any attack and, up to symmetry, have remained in the same position.

Finally, we show γ ∞∗
all (G) ≥ k + 4. Suppose that Hi contains exactly one guard g

at the end of round t . To dominate the vertices of degree 2 in Hi , g must be located
at the central vertex of Hi . If a vertex of degree 2 in Hi is attacked at the beginning
of round t + 1, g must move to the attacked vertex, then there are three vertices of
degree 2 that are not dominated by g. So for Hi to be dominated at the end of round
t + 1, two guards g1, g2 must move from c to the two vertices of degree 4 in Hi (since
each of g1, g2 dominates at most 2 vertices of degree 2 in Hi ). Let Hj be a copy of H
that contains only one guard g′ at the end of round t + 1. To dominate the vertices of
degree 2 in Hj , g′ must be located at the central vertex of Hj . If a vertex of degree 2
in Hj is attacked at the beginning of round t + 2, g′ must move to the attacked vertex.
However, for Hj to be dominated at the end of round t + 2, two guards g3, g4 must
move from c to the two vertices of degree 4 in Hj . Observe that g1, g2, g3, g4 are all
distinct guards (since at the beginning of round t+2, g1, g2 are located in Hi ). Further,
each copy of H apart from Hi , Hj ) must contain at least one guard, to dominate the
degree 2 vertices of that copy of H . Coupled with the upper bound, γ ∞∗

all (G) = k + 4.
�


The graph described by Fig. 2 illustrates that the difference between γ ∞
all and γ ∞∗

all
can be arbitrarily large. Observe that the described graph has a cut-vertex. As a result,
we leave the following as an open problem: does there exist a 2-connected graph for
which the difference between γ ∞

all and γ ∞∗
all is arbitrarily large?
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3 Algorithms

We describe algorithms to determine γ ∞
1 (G) and γ ∞

all (G) in time O∗(8n) and γ ∞∗
all (G)

in time O∗(( 818
√
3)n). The general framework for these algorithms is as follows.

We would like to determine if the graph parameter we consider is at most k for
each k ∈ {0, . . . , n}. We may restrict our attention to connected graphs as these
parameters can easily be derived from those of all connected components of G. Let
V (G) = {v1, v2, . . . , vn} and consider the graph parameter p ∈ {γ ∞

1 , γ ∞
all , γ

∞∗
all }.

The configuration graph is a useful and powerful tool in such configuration-space
type problem. It has been used in the context of a variety of problems, including vertex
colouring, minimum spanning trees, independent sets, and domination. Fricke et al.
(2011) used a configuration graph (called the γ -graph) to study minimum dominating
sets: sets forming the nodes of the configuration graph with two nodes adjacent if the
dominating sets differ in exactly one place.

For the graph parameter p, we now construct the configuration graph Cp =
(Cp, Tp). A node or configuration c ∈ Cp is a vector c = (c(v1), c(v2), . . . , c(vn))
where c(vi ) is the number of guards placed at vertex vi , (1 ≤ i ≤ n) such that∑

1≤i≤n c(vi ) = k. For the parameters γ ∞
1 and γ ∞

all , we require additionally that for
1 ≤ i ≤ n, c(vi ) ≤ 1. A transition t ∈ Tp is a set {c1, c2} of two configurations in Cp

such that one can be obtained from the other by moving at most 1 (for γ ∞
1 (G)) or a

subset of the guards (for γ ∞
all (G)) along an edge of G to a neighbouring vertex.

Lemma 1 The configuration graph can be constructed in time |Cp|2 · nO(1).

Proof To construct the configuration graphCp = (Cp, Tp) ofG, start withCp = Tp =
∅. First, enumerate all possible configurations and add them to Cp. This can easily
be done with polynomial delay by a simple branching algorithm. Now, determine for
every two configurations c1, c2 ∈ Cp whether {c1, c2} ∈ Tp in polynomial time as
follows.

If at most one guard is allowed to move, then {c1, c2} ∈ Tp if and only if c1 differs
from c2 in exactly two positions and the corresponding vertices are adjacent. This test
can obviously be done in polynomial time.

If all guards are allowed to move, construct a bipartite graph H with bipartition
(A, B) such that for each vertex vi ∈ V (G), A contains c1(vi ) copies of vi and B
contains c2(vi ) copies of vi . Two vertices a ∈ A and b ∈ B are adjacent in H if
they are copies of one and the same vertex in G or if they are copies of two adjacent
vertices in G. Now, {c1, c2} ∈ Tp if and only if H has a perfect matching. Each edge
in a perfect matching corresponds to the movement of a guard. Clearly, the size of H
is polynomial in n and a maximum matching of H can be found in polynomial time.

�

We say that a configuration is 0-step p-dominating if the vertices occupied by

guards form a dominating set in G; that is, if {vi ∈ V (G) : c(vi ) ≥ 1} dominates G.
A configuration c is k-step p-dominating if for each vertex vi ∈ V (G), there exists a
configuration c′ ∈ NCp [c] such that c′(vi ) ≥ 1 and c′ is (k − 1)-step p-dominating.
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Lemma 2 A configuration c is |Cp|-step p-dominating if and only if c is ∞-step
p-dominating.

Proof For the sake of contradiction, assume a configuration c0 is k-step p-dominating
but not (k + 1)-step p-dominating for some k ≥ |Cp|. Then c0 has a neighboring
configuration c′ in Cp that is (k − 1)-step p-dominating but not k-step p-dominating.
Repeating this argument eventually finds a directed path in Cp starting at c0 and ending
at a configuration that is 0-step p-dominating but not 1-step p-dominating. But this
path has k + 1 > |Cp| vertices, a contradiction. �


We next show that for any graph G on n vertices and an integer k, it can be decided
in time n3k · nO(1) whether there exists a configuration that is ∞-step p dominating.
To do this, the algorithms proceeds in rounds numbered from 1 to |Cp|. In round �,
1 ≤ � ≤ |Cp|, it determineswhich configurations are �-step p-dominating by checking
each configuration according to the definition that precedesLemma2.The computation
for one round can be done in time (|Cp|+|Tp|) ·nO(1) as each configuration is checked
once and each edge traversed twice.

As we may stop the computation after |Cp| rounds, the total running time of the
algorithm is |Cp| · (|Cp| + |Tp|) · nO(1) ≤ |Cp|3 · nO(1).

As for any fixed number of guards k, |Cp| ≤ nk , the running time of the algorithm
is polynomial if the number of guards is a constant.

Theorem 3 For any graph G on n vertices and an integer k, it can be decided in time
n3k · nO(1) whether γ ∞

1 (G) ≤ k, whether γ ∞
all (G) ≤ k or whether γ ∞∗

all (G) ≤ k.

More generally, as |Cp| ≤ 2n if at most one guard is allowed to be placed on each
vertex, Theorem 4 follows.

Theorem 4 For any graph G on n vertices, γ ∞
1 (G) and γ ∞

all (G) can be determined
in time O∗(8n).

If multiple guards are allowed to be placed on the vertices, the number of con-
figurations equals the number of weak compositions of k into n parts, which is(k+n−1

k

)
. Since k ≤ n, |Cγ ∞∗

all
| ≤ 4n , which leads to an algorithm with running

time O∗(64n). Using Klostermeyer and Mynhardt’s result that γ ∞
all (G) ≤ �n/2�

when G is connected, we can significantly improve this running time. Namely, since
γ ∞∗
all (G) ≤ γ ∞

all (G) ≤ �n/2�, the number of configurations can be bounded above by( 3n/2
�n/2�

)
.

Theorem 5 For any graph G on n vertices, γ ∞∗
all (G) can be determined in time

O∗
(
( 818

√
3)n

)
.

Proof We assume G is connected. Otherwise, process each connected component
independently. We have that |C∞∗

all | is at most
( 3n/2
�n/2�

)
and the running time of the

algorithm is upper bounded by |Cp|3 · nO(1). Using Stirling’s formula, the result
follows. �
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4 The combinatorial game

This section will draw upon material from combinatorial game theory and for
terminology and background, we refer the reader to Albert et al. (2007), Berlekamp
et al. (2001), and Siegel (2013). In particular, we consider the eternal dominating set
problem as a combinatorial game; that is, a two-player game with perfect information
and no chance devices, where players alternate moves until the player whose turn it is
has no legal moves available. The players are the attackers and the defenders and we
label the attackers as the Left player and the defenders as the Right player.

Let H = (V, E) be a graph, D be an ordered multi-set of guards (the elements of
D being vertices in the set V ), and A ⊂ V be a set of attackers. To avoid a game that
is a trivial win for the guards, we require |D| < |V |. Fix n to be the number of time
steps allowed before we declare the defenders the winner (then the game does not
continue indefinitely). Let t be the number of time steps remaining until the defenders
have been declared the winner (i.e. the number of time steps remaining until a total
of n time steps have passed). We define the game G by (H, D, A, t, n). To compute
values for G, we assign values for the ending positions and describe the legal moves
allowed to each player.

We first define the position G = (H, D, A, 0, n) = 0 which describes the situation
when the defenders have protected all the vertices from the attackers for n time steps.
In particular, this means that the underlying graph H can be defended successfully for
n steps given the initial configuration of attackers and defenders. If this holds as we
let n go to infinity, we would say the initial position is defender-win. Otherwise, it is
attacker-win.

A legal move for Right is given by (H, D, A, t, n) → (H, D′, A, t − 1, n) where
|D′| = |D|, A ⊂ D′ and for each di ∈ D, we require that d ′

i ∈ N [di ] for d ′
i ∈ D′.

This represents the defenders moving each guard at most one step along an edge of
the graph. Note that a move is legal only if the defenders can defend all of the vertices
that are currently under attack.

If A ⊂ D then Left has the legal move given by (H, D, A, t, n) → (H, D, A′, t, n)

where |A′| = |A| and A′ �⊂ D. This represents the fact that if all of the attackers are
currently covered by defenders, she must move them to new vertices so that at least
one unguarded vertex is being threatened. By definition, if it is Left’s turn and A �⊂ D
then her only legal move is to 0. This represents the attackers starting a turn on a vertex
which isn’t being defended and therefore they win.

We denote by GL , a Left option of G (i.e. a position Left can move to from G).
This symbol is used even when a player has more than one option or none at all, so
that the symbol GL need not have a unique value. Then GLL denotes a Left option of
GL (i.e. a position Left can move to from GL ). (GR and GRR are defined similarly.)

For an arbitrary game of eternal domination the canonical form would be infeasible
to compute. However, we will show that the reduced canonical form of a game G,
denoted rc f (G) only takes on particular values and is therefore helpful in determining
optimal play in sums with other games. The reduced canonical form of a game can
found based on a game’s left and right stops denoted LS(G) and RS(G), respectively.
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Table 1 The graph C3 with one attacker and one defender

Position Canonical Canonical Canonical Reduced canonical
form for form for form for form for
t = 1 t = 2 t = 3 large t

∗ ∗ ∗ 0

↓ ↓[2] ↓[3] 0

They are defined in a mutually recursive fashion:

LS(G) =
{
G if G is a number

max(RS(GL)) if G is not a number;

RS(G) =
{
G if G is a number

min(LS(GR)) if G is not a number.

The reduced canonical form of a game G is then:

rc f (G) =

⎧⎪⎨
⎪⎩

G if G is a number

RS(G) if G is not a number and RS(G) = LS(G)

{LS(G)|RS(G)} otherwise.

The reduced canonical form of a game can equivalently be defined as the simplest
game infinitely close to a given game and was shown by Grossman and Siegel (2009)
to be well-defined.

We make use of left stops, right stops and reduced canonical forms in the following
result (see the recent book by Siegel (2013) for a formal introduction to the concept
of reduced canonical form). Tables 1 and 2 illustrate some particular small eternal
domination games with their canonical forms and reduced canonical forms shown. In
Tables 1 and 2, for each graph H , the arrows indicate the vertex is in the set A; the
circled vertices indicate the vertex is in the set D.

Lemma 3 For any game G where t > 0, either GL = 0 or GLL = 0.
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Table 2 The graph P3 with one attacker and one defender

Position Canonical Canonical Canonical Reduced canonical
form for form for form for form for
t = 1 t = 2 t = 3 large t

1 1 1 1

∗ ∗ 1 1

∗ 1 1 1

{1 | 0} 1 1 {1 | 1 1} 1

↓ {1 | ↓} 1 1↑ 1

Proof There are two cases to consider. First, we assume that A �⊂ D. In this case, GL

= 0 since this is the only option the attackers have from a position where the defenders
have not defended all vertices under attack. The second case is when A ⊂ D. We
know that Left has made a legal move from this position and it must be to a position
where A �⊂ D. This is the first case we considered, so we conclude that GLL = 0. �

Lemma 4 The game G will terminate after a finite number of moves.

Proof Given the parameters t and n, we know that the defenders can make at most
n moves in the game before we reach a value of 0. Also, if the attackers make two
consecutive moves in a row at any point, the game is over with value 0 due to the
previous lemma. Therefore, we achieve the maximum number of moves with alternate
play and can have at most 2n moves taken in total. �

Lemma 5 For a game G where there exists v ∈ A but v /∈ N [D], then G = 1.

Proof If Left plays first from this game, it must be to 0 since A �⊂ D. If Right plays
first from this game, we find that he has no legal move. Since v /∈ N [D], there is no
di ∈ D which can move to v so that A ⊂ D′. Therefore, G = {0 | } = 1. �

Corollary 1 For a game G where D is not a dominating set, there exists GL = 1.
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Proof Left’s move from such a game would be to choose a A′ such that it contained
a vertex v /∈ N [D]. The previous lemma gives this left option the value 1. �

Theorem 6 For any game G in the starting position, if the attackers can win the game
by playing first, LS(G) = 1. Otherwise, LS(G) = 0. Likewise, if the defenders can win
the game playing first, RS(G)=0 otherwise RS(G)=1.

Proof We proceed by induction on t and denote a game by Gt for clarity. First note
that if t = 1 we can have two cases.

The first case is when A ⊂ D. After Left makes a move, if Right cannot respond,
we know the game has value 1. If Right has a legal move after Left’s move, it must be
to 0 since we will have t = 0. We can also note that if Left were to make two moves in
a row, it would be to 0 as well. Finally, we note that if Right were to play first he has
the legal move defined by D′ = D and it would have value 0 since t would become 0.
So, if Left can win playing first we get G1 = {1 | 0} in which case LS(G1) = 1. If Left
cannot win playing first we get G1 = {{0 | 0} | 0} = {∗ | 0} and we note that LS(G1)
= 0. Either way, we note that Right could win playing first and that RS(G1) = 0.

For the second case, we assume A �⊂ D and note that such a position can only be
reached after a Left move. If Left plays first, her only option is to 0. If Right plays first,
we must consider whether or not he has a legal move. If he does, it must be to 0 since
t would become 0. In that case, G1 = ∗ and we have that RS(G1) = 0. Otherwise,
if Right does not have a legal move from G1 then G1 = {0 | } = 1 and LS(G1) =
RS(G1) = 1.

In all but one case, the Left and Right stops were 0 if the defenders could win and
1 if the attackers could win. The case where the Left stop was 0 after the attackers had
won was due to the fact that Left required two consecutive moves to end the game.
Therefore, it is a position which cannot be reached with alternate play.

Nowwewill consider the gameGt .We again have two cases and begin by assuming
A ⊂ D.

We start by letting Left play first. If Right cannot respond, we know the game has
value 1 and we would find that LS(Gt ) = 1. If Right has a legal move after Left’s move,
it must be to some game Gt−1 where we again have A ⊂ D. So, LS(Gt ) = LS(Gt−1)
which must be 1 or 0 by induction. Now we consider Right’s options from Gt . We
know Right has a legal move to some game Gt−1 by letting D′ = D so by induction
RS(Gt ) = LS(Gt−1) which must be 0 or 1.

Now we examine the case where A �⊂ D. If Left plays first, it must be to 0. If Right
must play first, we must decide if he has a legal move. If he has no legal move, then
Gt = 1 and LS(Gt ) = RS(Gt ) = 1. If Right does have a legal move, it must be to some
game Gt−1 where A ⊂ D. Therefore, RS(Gt ) = LS(Gt−1) = 0 or 1 by induction.

Again we find that except in one case, the left and right stops of G are 1 if the
attackers can win and 0 if the defenders can win. The exceptional case occurs only
when Left can make two consecutive moves and therefore is not reachable in alternate
play from a position with A ⊂ D. �


Since the left stops and rights stops are 0 or 1, considering the four possible com-
binations of left and right stops yields the following corollary.

Corollary 2 For any game G = (H, D, A, t, n), Rc f (G) is 1, 0, or {1 | 0}.
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Considering the original definition of eternal domination (in previous sections),
there is no time limit for which the defenders need to protect vertices of the graph. To
connect the results of this section to the rest of the paper, we consider the more natural
analogous definition, G = (H, D, A).

Theorem 7 Given the game G = (H, D, A), the reduced canonical form of G is 1,
0, or {1 | 0}.
Proof For any fixed H , D, and A, there are only finitely many positions for the game.
Therefore we can choose an n sufficiently large so that if the attackers can win, they
can do so in at most n steps. Therefore, it is equivalent to the game (H, D, A, n, n). �


Tables 1 and 2 show the reduced canonical forms for some small games, in particular
(with one attacker and one guard), P3 is attacker-win and its reduced canonical form
is 1 whereas C3 is defender-win and its reduced canonical form is 0.
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