Skip to main content
Log in

Process parameter optimization in friction spot welding of AA5754 and Ti6Al4V dissimilar joints using response surface methodology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study shows experimental and numerical results of friction spot welding of AA5754 and Ti6Al4V alloys. The determination of proper welding parameters plays an important role for the weld strength. Experimental tests, conducted according to combinations of process parameters such as tool rotational speed (RS) and dwell time (DT), were investigated with response surface methodology using a 3k factorial design of experiments. Sound joints with elevated shear strength were achieved and the influence of the main process parameters on joint strength evaluated. DT was the parameter with the largest influence on the joint shear resistance (58.9 %), followed by its interaction with RS (38.1 %). Higher strength was correlated to the thickness and morphology of the joint interface. A numerical model for predicting lap shear strength was successfully developed and used to optimize welding parameters in order to produce high-performance joints with less energy consumption and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang SY, Tsao LC, Lei YH, Mao SM, Huang CH (2012) Brazing of 6061 aluminum alloy/Ti–6Al–4V using Al–Si–Cu–Ge filler metals. J Mater Process Technol 212:8–14. doi:10.1016/j.jmatprotec.2011.07.014

    Article  Google Scholar 

  2. Majumdar B, Galun R, Weisheit A, Mordike BL (1997) Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser. J Mater Sci 32:6191–6200. doi:10.1023/A:1018620723793

    Article  Google Scholar 

  3. Jiangwei R, Yajiang L, Tao F (2002) Microstructure characteristics in the interface zone of Ti/Al diffusion bonding. Mater Lett 56:647–652. doi:10.1016/S0167-577X(02)00570-0

    Article  Google Scholar 

  4. Kenevisi MS, Mousavi Khoie SM (2012) An investigation on microstructure and mechanical properties of Al7075 to Ti–6Al–4V Transient Liquid Phase (TLP) bonded joint. Mater Des 38:19–25. doi:10.1016/j.matdes.2012.01.046

    Article  Google Scholar 

  5. Vaidya WV, Horstmann M, Ventzke V, Petrovski B, Koçak M, Kocik R, Tempus G (2010) Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. J Mater Sci 45:6242–6254. doi:10.1007/s10853-010-4719-6

    Article  Google Scholar 

  6. Bang HS, Bang HS, Song H, Joo D (2013) Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding. Mater Des 51:544–551. doi:10.1016/j.matdes.2013.04.057

    Article  Google Scholar 

  7. Wei Y, Aiping W, Guisheng Z, Jialie R (2008) Formation process of the bonding joint in Ti/Al diffusion bonding. Mater Sci Eng A 480:456–463. doi:10.1016/j.msea.2007.07.027

    Article  Google Scholar 

  8. Bang K, Lee K, Bang HS, Bang HS (2011) Interfacial microstructure and mechanical properties of dissimilar friction stir welds between 6061-T6 aluminum and Ti-6%Al-4%V alloys. Mater Trans 52:974–978. doi:10.2320/matertrans.l-mz201114

    Article  Google Scholar 

  9. Rosendo T, Parra B, Tier MAD, da Silva AAM, dos Santos JF, Strohaecker TR, Alcântara NG (2011) Formation process of the bonding joint in Ti/Al diffusion bonding. Mater Des 32:1094–1100. doi:10.1016/j.msea.2007.07.027

    Article  Google Scholar 

  10. Suhuddin U, Fischer V, Kroeff F, dos Santos JF (2014) Microstructure and mechanical properties of friction spot welds of dissimilar AA5754 Al and AZ31 Mg alloys. Mater Sci Eng A 590:384–389. doi:10.1016/j.msea.2013.10.057

    Article  Google Scholar 

  11. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and produce optimization using designed experiments. Wiley, New York

    MATH  Google Scholar 

  12. Ruggiero A, Tricarico L, Olabi AG, Benyounis KY (2011) Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316. Opt Laser Technol 43:82–90. doi:10.1016/j.optlastec.2010.05.008

    Article  Google Scholar 

  13. Benyounis KY, Olabi AG, Hashmi MSJ (2008) Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. Opt Laser Technol 40:76–87. doi:10.1016/j.optlastec.2007.03.009

    Article  Google Scholar 

  14. Amancio-Filho ST, Camillo APC, Bergmann L, dos Santos JF, Kuri SE, Alcântara NG (2011) Preliminary investigation of the microstructure and mechanical behaviour of 2024 aluminium alloy friction spot welds. Mater Trans 52:985–991. doi:10.2320/matertrans.l-mz201126

    Article  Google Scholar 

  15. Altmeyer J, dos Santos JF, Amancio-Filho ST (2014) Effect of the friction riveting process parameters on the joint formation and performance of Ti alloy/short-fibre reinforced polyether ether ketone joints. Mater Des 60:164–176. doi:10.1016/j.matdes.2014.03.042

    Article  Google Scholar 

  16. Olabi AG, Casalino G, Benyounis KY, Rotondo A (2007) Minimisation of the residual stress in the heat affected zone by means of numerical methods. Mater Des 28:2295–2302. doi:10.1016/j.matdes.2006.08.005

    Article  Google Scholar 

  17. DIN EN ISO 14273 (2014) Specimen dimensions and procedure for tensile shear testing resistance spot, seam and embossed projection welds. DIN, the German Institute for Standardization

  18. AWS D17.2/D17.2M (2013) Specification for resistance welding for aerospace applications. AWS, American Welding Society

  19. Tanaka T, Morishige T, Hirata T (2009) Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scr Mater 61:756–759. doi:10.1016/j.scriptamat.2009.06.022

    Article  Google Scholar 

  20. Watanabe T, Takayama H, Yanagisawa A (2012) Joining of aluminum alloy to steel by friction stir welding. J Mater Process Technol 178:342–349. doi:10.1016/j.jmatprotec.2006.04.117

    Article  Google Scholar 

  21. Chen SH, Li LQ, Chen YB (2010) Interfacial reaction mode and its influence on tensile strength in laser joining Al alloy to Ti alloy. Mater Sci Technol 26:230–235. doi:10.1179/174328409X399056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Plaine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaine, A.H., Gonzalez, A.R., Suhuddin, U.F.H. et al. Process parameter optimization in friction spot welding of AA5754 and Ti6Al4V dissimilar joints using response surface methodology. Int J Adv Manuf Technol 85, 1575–1583 (2016). https://doi.org/10.1007/s00170-015-8055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8055-5

Keywords

Navigation