Skip to main content
Log in

Deformation measurement of circular steel plates using projected fringes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fringe projection is a versatile method for mapping the surface topography. In this paper, it is used to measure the deformation of steel plates under static penetration. Here, the surface shape changes continuously. Therefore, it is important to minimize the registration time. To achieve this, we apply a method of fringe location with subpixel accuracy that requires only a single exposure for each registration. This is in contrast to phase shifting techniques that require at least three separate exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gåsvik KJ (2002) Optical metrology, 3rd edn. Wiley, Chichester. ISBN 0-470-84300-4

    Book  Google Scholar 

  2. Sciammarella C, Lamberti L, Boccaccio A (2008) General model for moiré contouring, part 1: theory. Opt Eng. doi:10.1117/1.2899039

    Google Scholar 

  3. Chen F, Brown GM, Song M (2000) Overview of three-dimensional shape measurement using optical methods. Opt Eng 39(1):10–22

    Article  Google Scholar 

  4. Wang Z, Du H, Bi H (2006) Out-of-plane shape determination in generalized fringe projection profilometry. Opt Express 14:12122–12133

    Article  Google Scholar 

  5. Huntley J M, Ogundana T, Borguete R L, Coggrave C R (2002) Large-scale full-field metrology using projected fringes: some challenges and solutions. 2007 SPIE. Vol 6616

  6. Jeong M.-S, Kim S.-W (2001) Phase-shifting projection moiré for out-of-plane displacement measurement. Second International Conference on Experimental Mechanics, Proc. SPIE, vol. 4317, p. 170–179.

  7. Yoshizawa T, Tomosawa T (1993) Shadow moiré topography by means of phase-shift method. Opt Eng 32(7):1668–1674

    Article  Google Scholar 

  8. Rosvold GO (1990) Fast measurement of phase using a PC-based frame grabber and phase stepping technique. Appl Opt 29:237–241

    Article  Google Scholar 

  9. Huang P, Chiang F P (1999) Recent advances in fringe projection technique for 3D shape measurement, SPIE conference on optical diagnostics for fluids/heat/combustion and photomechanics for solids. Colorado, SPIE Vol 3783

  10. Chen L, Quan C (2005) Fringe projection profilometry with nonparallel illumination: a least-squares approach. Opt Let 30(16):2101–2103

    Article  Google Scholar 

  11. Sansoni G, Trebeschi M, Docchio F (2006) Fast 3 D profilometer based upon the projection of a single fringe pattern and absolute calibration. Meas Sci Tech 17:1757–1766

    Article  Google Scholar 

  12. Huang P, Zhang S, Chiang F P (2005) Trapezoidal phase shifting for three-dimensional shape measurement. Opt Eng 44(12), 123601. doi:10.1117/1.2147311

  13. Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72(1):156–160

    Article  Google Scholar 

  14. Takeda M, Mutoh K (1983) Fourier transform profilometry for the automatic measurement of 3-D object shape. Appl Opt 24:3977–3982

    Article  Google Scholar 

  15. Sciammarella C, Lamberti L, Sciammarella FM (2005) High-accuracy contouring using projection moiré. Opt Eng 44(9):093605

    Article  Google Scholar 

  16. Salas L, Luna E, Salinas J, Garcia V (2003) Profilometry by fringe projection. Opt Eng 42:3307–3314

    Article  Google Scholar 

  17. Malcom A A, Burton D R, Lalor M J (1990) Full-field Fourier fringe analysis for industrial inspection. 1990 SPIE

  18. Sciammarella C, Lamberti L, Boccaccio A, Cosola E, Posa D (2008) General model for moiré contouring, part 2: applications. Opt Eng 47(3):033606

    Article  Google Scholar 

  19. Gasvik KJ, Robbersmyr KG, Vadseth T (2010) Projected fringes for the measurement of large aluminum ingots. Meas Sci Technol 21:105302

    Article  Google Scholar 

  20. Spagnolo GS, Guttari G, Sapia C, Ambrosini D, Paoletti D, Accardo G (2000) Contouring of artwork surface by fringe projection and FFT analysis. Opt Lasers Eng 33:141–156

    Article  Google Scholar 

  21. Shi H, Ji H, Yang G, He X (2013) Shape and deformation measurement system by combining fringe projection and digital image correlation. Optic Laser Eng 51(1):47–53

    Article  Google Scholar 

  22. Molimard J, Navarro L (2013) Uncertainty on fringe projection technique: a Monte-Carlo-based approach. Optic Laser Eng 51(7):840–847

    Article  Google Scholar 

  23. Gåsvik KJ, Robbersmyr KG (1994) Error analysis of a zero-crossing algorithm for fringe location. Opt Eng 33:246–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjell G. Robbersmyr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gåsvik, K.J., Robbersmyr, K.G., Vadseth, T. et al. Deformation measurement of circular steel plates using projected fringes. Int J Adv Manuf Technol 70, 321–326 (2014). https://doi.org/10.1007/s00170-013-5276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5276-3

Keywords

Navigation