Skip to main content
Log in

Mathematical modeling and verification of pulse electrochemical micromachining of microtools

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Pulse electrochemical micromachining (PECMM) is an unconventional manufacturing method suitable for the production of micro-sized components on a wide range of electrically conductive materials. PECMM in this study has been used to manufacture microtools. The non-contact nature of PECMM has necessitated the modeling of the process to estimate the anodic profile (microtool profile). This paper presents a mathematical model for predicting the diameter of the microtools fabricated by PECMM process. Tungsten microtools of diameters less than 100 μm were fabricated using an in-house built microelectrochemical machining system. Experimental results confirm the theoretical prediction of reduction in tool diameter with respect to increasing machining time. Further, from the experimental verification, it was found that the deviations in the tool diameters were within 9 % of the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289(5476):98–101. doi:10.1126/science.289.5476.98

    Article  Google Scholar 

  2. McGeough JA (1974) Principles of electrochemical machining. Chapman and Hall, London

    Google Scholar 

  3. Bo Hyun K, Shi Hyoung R, Deok Ki C, Chong Nam C (2005) Micro electrochemical milling. J Micromech Microeng 15(1):124

    Article  Google Scholar 

  4. Mithu M, Fantoni G, Ciampi J (2011) The effect of high frequency and duty cycle in electrochemical microdrilling. Int J Adv Manuf Technol 55(9):921–933. doi:10.1007/s00170-010-3123-3

    Article  Google Scholar 

  5. Kim BH, Na CW, Lee YS, Choi DK, Chu CN (2005) Micro electrochemical machining of 3D micro structure using dilute sulfuric acid. CIRP Ann Manuf Technol 54(1):191–194. doi:10.1016/s0007-8506(07)60081-x

    Article  Google Scholar 

  6. Mathew R, James S, Sundaram MM (2010) Experimental study of micro tools fabricated by electrochemical machining. ASME Conf Proc 2010(49460):73–80

    Google Scholar 

  7. Dabholkar A, Sundaram MM (2012) Study of micro-abrasive tool-making by pulse plating using Taguchi method. Mater Manuf Process 27(11):1233–1238. doi:10.1080/10426914.2012.663143

    Article  Google Scholar 

  8. Ghoshal B, Bhattacharyya B (2013) Influence of vibration on micro-tool fabrication by electrochemical machining. Int J Mach Tool Manuf 64:49–59. doi:10.1016/j.ijmachtools.2012.07.014

    Article  Google Scholar 

  9. Liu Y, Zhu D, Zeng Y, Yu H (2010) Development of microelectrodes for electrochemical micromachining. Int J Adv Manuf Technol 55(1–4):195–203. doi:10.1007/s00170-010-3035-2

    Google Scholar 

  10. Fan Z-W, Hourng L-W, Wang C-Y (2010) Fabrication of tungsten microelectrodes using pulsed electrochemical machining. Precis Eng 34(3):489–496. doi:10.1016/j.precisioneng.2010.01.001

    Article  Google Scholar 

  11. Mathew R, Sundaram MM (2012) Modeling and fabrication of micro tools by pulsed electrochemical machining. J Mater Process Technol 212(7):1567–1572. doi:10.1016/j.jmatprotec.2012.03.004

    Article  Google Scholar 

  12. Kamaraj AB, Sundaram MM, Mathew R (2013) Ultra high aspect ratio penetrating metal microelectrodes for biomedical applications. Microsyst Technol 19(2):179–186. doi:10.1007/s00542-012-1653-3

    Article  Google Scholar 

  13. Guo S, Guo ZN, Luo HP, Gu WC (2011) Experimental research of electrochemical mechanical polishing (ECMP) for micro tool electrode. Adv Mater Res 314–316:1846–1850. doi:10.4028/www.scientific.net/AMR.314-316.1846

    Article  Google Scholar 

  14. Rajurkar KP, Wei B, Kozak J, McGeough JA (1995) Modelling and monitoring interelectrode gap in pulse electrochemical machining. CIRP Ann Manuf Technol 44(1):177–180. doi:10.1016/s0007-8506(07)62301-4

    Article  Google Scholar 

  15. Kozak J, Rajurkar K, Makkar Y (2004) Selected problems of micro-electrochemical machining. J Mater Process Technol 149(1–3):426–431. doi:10.1016/j.jmatprotec.2004.02.031

    Article  Google Scholar 

  16. Rajurkar KP, Levy G, Malshe A, Sundaram MM, McGeough J, Hu X, Resnick R, DeSilva A (2006) Micro and nano machining by electro-physical and chemical processes. CIRP Ann Manuf Technol 55(2):643–666. doi:10.1016/j.cirp.2006.10.002

    Article  Google Scholar 

  17. Kozak J (1998) Mathematical models for computer simulation of electrochemical machining processes. J Mater Process Technol 76(Compendex):170–175

    Article  Google Scholar 

  18. Kozak J, Rajurkar KP, Wei B (1994) Modelling and analysis of pulse electrochemical machining (PECM). J Eng Ind 116(3):316–323

    Article  Google Scholar 

  19. Kozak J, Dabrowski L, Osman H, Rajurkar KP (1991) Computer modelling of electrochemical machining with rotating electrode. J Mater Process Technol 28(1–2):159–167. doi:10.1016/0924-0136(91)90215-z

    Article  Google Scholar 

  20. Sarkar S, Mitra S, Bhattacharyya B (2004) Mathematical modeling for controlled electrochemical deburring (ECD). J Mater Process Technol 147(2):241–246

    Article  Google Scholar 

  21. Ma N, Xu W, Wang X, Tao B (2010) Pulse electrochemical finishing: modeling and experiment. J Mater Process Technol 210(6–7):852–857. doi:10.1016/j.jmatprotec.2010.01.016

    Article  Google Scholar 

  22. Volgin V, Davydov A (2012) Mass-transfer problems in the electrochemical systems. Russ J Electrochem 48(6):565–569. doi:10.1134/s1023193512060146

    Article  Google Scholar 

  23. Minazetdinov NM (2009) A hydrodynamic interpretation of a problem in the theory of the dimensional electrochemical machining of metals. J Appl Math Mech 73(1):41–47. doi:10.1016/j.jappmathmech.2009.03.009

    Article  Google Scholar 

  24. Minazetdinov NM (2009) A scheme for the electrochemical machining of metals by a cathode tool with a curvilinear part of the boundary. J Appl Math Mech 73(5):592–598. doi:10.1016/j.jappmathmech.2009.11.012

    Article  MATH  Google Scholar 

  25. Zhiyong L, Zongwei N (2007) Convergence analysis of the numerical solution for cathode design of aero-engine blades in electrochemical machining. Chin J Aeronaut 20(6):570–576. doi:10.1016/s1000-9361(07)60084-3

    Article  Google Scholar 

  26. Zhu D, Wang K, Qu NS (2007) Micro wire electrochemical cutting by using in situ fabricated wire electrode. CIRP Ann Manuf Technol 56(1):241–244. doi:10.1016/j.cirp.2007.05.057

    Article  Google Scholar 

  27. Wu J, Wang H, Chen X, Cheng P, Ding G, Zhao X, Huang Y (2012) Study of a novel cathode tool structure for improving heat removal in electrochemical micro-machining. Electrochim Acta 75:94–100. doi:10.1016/j.electacta.2012.04.078

    Article  Google Scholar 

  28. Deconinck D, Van Damme S, Deconinck J (2012) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: theoretical basis. Electrochim Acta 60:321–328. doi:10.1016/j.electacta.2011.11.070

    Article  Google Scholar 

  29. Deconinck D, Damme SV, Deconinck J (2012) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part II: numerical simulation. Electrochim Acta 69:120–127. doi:10.1016/j.electacta.2012.02.079

    Article  Google Scholar 

  30. Rajurkar KP, Kozak J, Wei B, McGeough JA (1993) Study of pulse electrochemical machining characteristics. CIRP Ann Manuf Technol 42(1):231–234. doi:10.1016/s0007-8506(07)62432-9

    Article  Google Scholar 

  31. Loutrel SP, Cook NH (1973) A theoretical model for high rate electrochemical machining. J Eng Ind 95(4):1003–1008

    Article  Google Scholar 

  32. Wei B (1994) Modeling and analysis of pulse electrochemical machining. University of Nebraska–Lincoln, Lincoln

    Google Scholar 

  33. Kozak J (2004) Thermal models of pulse electrochemical machining. Bull Pol Acad Sci Chem 52(4):313–320

    Google Scholar 

  34. Balsamy Kamaraj A, Dyer R, Sundaram MM (2012) Pulse electrochemical micromachining of tungsten carbide. In: ASME 2012 International Manufacturing Science and Engineering Conference (MSEC2012), University of Notre Dame, Notre Dame, IN, USA

  35. Zhang Y (2010) Investigation into current efficiency for pulse electrochemical machining of nickel alloy. Thesis, University of Nebraska–Lincoln, Lincoln

  36. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. NACE, Houston, p 644

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Sundaram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamaraj, A.B., Sundaram, M.M. Mathematical modeling and verification of pulse electrochemical micromachining of microtools. Int J Adv Manuf Technol 68, 1055–1061 (2013). https://doi.org/10.1007/s00170-013-4896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-4896-y

Keywords

Navigation