Skip to main content

Advertisement

Log in

Future trends in predicting the complex fracture behaviour of rubber materials

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Future trends in predicting the fracture behaviour of rubber materials (products) are discussed. A complex methodology for the determination of rubber fracture behaviour from the energy viewpoint based on simulating realistic loading conditions in services applied to a rubber matrix in a laboratory test set-up is introduced. Because this is a pure rubber matrix investigation, additional effects such as rubber product design or assembling the final performance can be fully avoided. This methodology requires instrumented and automated laboratory equipment—an intrinsic strength analyser and a tear and fatigue analyser which represent the first commercialization of a classic method for assessing long-term durability. These testing methods are applied to quantify the behaviour of rubber compounds over a broad range of tearing energies—from the fatigue threshold up to the critical tearing energy or the ultimate tear strength \(T_{\mathrm {C}}\) to determine the relationship between fatigue crack growth rates da/dn versus the tearing energy T. This complex methodology was evaluated for carbon-black-reinforced compounds based on pure natural rubber and butadiene rubber typical for tire applications. Finally, the determined data were correlated with previous work done by Lake and Lindley (J Appl Polym Sci 9:1233–1251, 1965) as well as with practical experiences of tire manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a (mm):

Crack length

B (mm):

Thickness

b (–):

Proportionality constant

\(\beta \) (–):

Material constant

da/dn (mm/cycle):

Fatigue crack growth rate

f (N):

Cutting force

\(F_{\mathrm {C}}\) (J/m\(^{2}\)):

Cutting energy

l (mm):

Clamp distance

\(L_{0}\) (mm):

Length of sample

m (–):

Material constant

n (cycle):

Loading cycles

\(S_{\mathrm {0,C}}\) (J/m\(^{2}\)):

Intrinsic cutting energy

T (J/m\(^{2}\)):

Tearing energy

\(T_{0}\) (J/m\(^{2}\)):

Intrinsic strength

\(T_{\mathrm {C}}\) (J/m\(^{2}\)):

Ultimate tear strength

W (J):

Recoverable elastic strain energy

\(W_{\mathrm {dis}}\) (J):

Dissipated energy

\(W_{\mathrm {ext}}\) (J):

External work

\(W_\mathrm{P}\) (mm):

Width of sample

\(W_{\mathrm {sep }}\) (J):

Local work of separation

CB:

Carbon black

CCD:

Charge-coupled device

BR:

Butadiene rubber

E-SBR:

Emulsion styrene–butadiene rubber

FCG:

Fatigue crack growth

NR:

Natural rubber

ISA:

Intrinsic strength analyser

ISO:

International organization for standardization

LLC:

Limited liability company

phr:

Parts per hundred rubber

rpm:

Rotation per minute

SBR:

Styrene–butadiene rubber

TFA:

Tear and fatigue analyser

USA:

United States of America

References

  1. Lake, G.J., Yeoh, O.H.: Effect of crack tip sharpness on the strength of vulcanized rubbers. J. Polym. Sci. Part B Polym. Phys. 25, 1157–1190 (1987)

    Article  ADS  Google Scholar 

  2. Bhowmick, A.K.: Threshold fracture of elastomers. J. Macromol. Sci. Polym. Rev. 28, 339–370 (1988)

    Article  Google Scholar 

  3. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198 (1921)

    Article  ADS  Google Scholar 

  4. Rivlin, R.S., Thomas, A.G.: Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 10, 291–318 (1953)

    Article  ADS  Google Scholar 

  5. Andrews, E.H.: Rupture propagation in hysteresial materials: Stress at a notch. J. Mech. Phys. Solids 11, 231–242 (1963)

    Article  ADS  Google Scholar 

  6. Sumpter, J.D.G.: An alternative view of R curve testing. Eng. Fract. Mech. 64, 161–176 (1999)

    Article  Google Scholar 

  7. Sumpter, J.D.G.: The energy dissipation rate approach to tearing instability. Eng. Fract. Mech. 71, 17–37 (2004)

    Article  Google Scholar 

  8. Persson, B., Albohr, O., Tartaglino, U., et al.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, R1–R62 (2005)

    Article  Google Scholar 

  9. Gent, A.N., Lindley, P.B., Thomas, A.G.: Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue. J. Appl. Polym. Sci. 8, 455–466 (1964)

    Article  Google Scholar 

  10. Lake, G.J., Lindley, P.B.: The mechanical fatigue limit for rubber. J. Appl. Polym. Sci. 9, 1233–1251 (1965)

    Article  Google Scholar 

  11. Lake, G.J., Thomas, A.G.: The strength of highly elastic materials. Proc. R. Soc. Lond. Ser. A 300, 108–119 (1967)

    Article  ADS  Google Scholar 

  12. Gent, A.N., Mars, W.V.: Strength of elastomers. In: Mark, J., et al. (eds.) Science and Technology of Rubber, Chapter 10, 4th edn, pp. 473–516. Academic Press, Cambridge (2013)

    Chapter  Google Scholar 

  13. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–533 (1963)

    Article  Google Scholar 

  14. Lake, G.J., Lindley, P.B.: Mechanical fatigue limit for rubber. Rubber Chem. Technol. 39, 348–364 (1966)

    Article  Google Scholar 

  15. Mars, W.V., Kipscholl, C., Stocek, R.: Intrinsic Strength Analyser based on the cutting method. In: Proceedings of the Fall 190th Technical Meeting of the Rubber Division of the American Chemical Society, pp. 10–13. Pittsburgh, USA (2016)

  16. Robertson, C.G., Stocek, R., Kipscholl, C., et al.: Characterizing the intrinsic strength (fatigue threshold) of natural rubber/butadiene rubber blends. Tire Sci. Technol. 47, 292–307 (2019)

    Article  Google Scholar 

  17. Mars, W.V.: Fatigue life prediction for elastomeric structures. Rubber Chem. Technol. 80, 481–503 (2007)

    Article  Google Scholar 

  18. Lake, G.J., Yeoh, O.H.: Measurement of rubber ecutting resistance in the absence of friction. Int. J. Fract. 14, 509–526 (1978)

    Article  Google Scholar 

  19. Mars, W.V.: Instrument for measuring the intrinsic strength of polymeric materials via cutting. No.: US 2017/0003207 A1, USA (2017)

  20. Stocek, R., Kratina, O., Kipscholl, R.: A new experimental approach to rubber resistance against cutting by sharp objects. In: Constitutive Models for Rubber IX. Proceedings of the 9th European Conference on Constitutive Models for Rubbers, ECCMR 2015, pp. 357–362 (2015)

  21. Reincke, K., Grellmann, W., Kluppel, M.: Investigation of fracture mechanical properties of filler-reinforced styrene-butadiene elastomers. Kautsch. Gummi Kunstst. 5, 246–251 (2009)

    Google Scholar 

  22. Kim, J.H., Jeong, H.Y.: A study on the material properties and fatigue life of natural rubber with different carbon blacks. Int. J. Fatigue 27, 263–272 (2005)

    Article  Google Scholar 

  23. Lake, G.J.: Fatigue and fracture of elastomers. Rubber Chem. Technol. 68, 435–460 (1995)

    Article  Google Scholar 

  24. Ghosh, P., Stocek, R., Gehde, M., et al.: Investigation of fatigue crack growth characteristics of NR/BR blend based tyre tread compounds. Int. J. Fatigue 188, 9–21 (2014)

    Google Scholar 

  25. Ghosh, P., Mukhopadhyay, R., Stocek, R.: Durability prediction of NR/BR and NR/SBR blend tread compounds using tear fatigue analyser. Kautsch. Gummi Kunstst. 69, 53–55 (2016)

    Google Scholar 

  26. Eisele, U., Kelbch, S.A., Engels, H.W.: The tear analyzer—a new tool for quantitative measurements of the dynamic crack growth of elastomers. Kautsch. Gummi Kunstst. 45, 1064–1069 (1992)

    Google Scholar 

  27. Stocek, R., Heinrich, G., Gehde, M., et al.: Analysis of dynamic crack propagation in elastomers by simultaneous tensile- and pure-shear-mode testing. In: Grellmann, W., et al. (eds.) Fracture Mechanics and Statistical Mechanics, pp. 269–301. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  28. Stocek, R., Horst, T., Reincke, K.: Tearing energy as fracture mechanical quantity for elastomers. In: Stöckelhuber, K.W., et al. (eds.) Designing of Elastomer Nanocomposites: From Theory to Applications. Advances in Polymer Science, pp. 361–398. Springer, New York (2017)

    Google Scholar 

  29. Thomas, A.G.: Rupture of rubber II. The strain concentration at an incision. J. Polym. Sci. 18, 177–188 (1955)

    Article  ADS  Google Scholar 

  30. Greensmith, H.W., Thomas, A.G.: Rupture of rubber III. Determination of tear properties. J. Polym. Sci. 18, 189–200 (1955)

    Article  ADS  Google Scholar 

  31. Thomas, A.G.: The development of fracture mechanics for elastomers. Rubber Chem. Technol. 67, G50–G60 (1994)

    Article  Google Scholar 

  32. Gent, A.N., Henry, A.W.: On the tear strength of rubbers. In: Proceedings of International Rubber Conference, Brighton, pp. 193–204 (1967)

  33. Reincke, K.: Elastomere Werkstoffe—Zusammenhang zwischen Mischungsrezeptur, Struktur und mechanischen Eigenschaften sowie dem Deformations-und Bruchverhalten. Shaker, Herzogenrath (2016)

    Google Scholar 

  34. Grellmann, W., Reincke, K.: Technical material diagnostics—fracture mechanics of filled elastomer blends. In: Grellmann, W., et al. (eds.) Fracture Mechanics and Statistical Mechanics, pp. 227–268. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  35. Gent, A.N., Mars, W.V.: Strength of elastomers (Chapter 10). In: Mark, J.E., et al. (eds.) The Science and Technology of Rubber, 4th edn, pp. 473–516. Academic Press, Boston (2013)

    Chapter  Google Scholar 

  36. Stocek, R., Mars, W.V., Kratina, O., et al.: Characterization of ageing effect on the intrinsic strength of NR, BR and NR/BR blends. In: Constitutive Models for Rubber X. Proceedings of the 10th European Conference on Constitutive Models for Rubber, ECCMR X 2017, pp. 371–374 (2017)

Download references

Acknowledgements

This article was written with the support of the project Centre of Polymer Systems—Strengthening Research Capacity (Reg. Number: CZ.1.05/2.1.00/19.0409) as well as NPU I (LO1504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Stoček.

Additional information

Communicated by Victor Eremeyev and Holm Altenbach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoček, R., Stěnička, M. & Zádrapa, P. Future trends in predicting the complex fracture behaviour of rubber materials. Continuum Mech. Thermodyn. 33, 291–305 (2021). https://doi.org/10.1007/s00161-020-00887-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00887-z

Keywords

Navigation