Skip to main content
Log in

Well-posedness of a two-scale model for liquid phase epitaxy with elasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Epitaxy, a special form of crystal growth, is a technically relevant process for the production of thin films and layers. It can generate microstructures of different morphologies, such as steps, spirals or pyramids. These microstructures are influenced by elastic effects in the epitaxial layer. There are different epitaxial techniques, one being liquid phase epitaxy. Thereby, single particles are deposited out of a supersaturated liquid solution on a substrate where they contribute to the growth process. This article studies a two-scale model including elasticity, introduced in Eck et al. (Eur Phys J Special Topics 177:5–21, 2009) and extended in Eck et al. (2006). It consists of a macroscopic Navier–Stokes system and a macroscopic convection–diffusion equation for the transport of matter in the liquid, and a microscopic problem that combines a phase field approximation of a Burton–Cabrera–Frank model for the evolution of the epitaxial layer, a Stokes system for the fluid flow near the layer and an elasticity system for the elastic deformation of the solid film. Suitable conditions couple the single parts of the model. As the main result, existence and uniqueness of a solution are proven in suitable function spaces. Furthermore, an iterative solving procedure is proposed, which reflects, on the one hand, the strategy of the proof of the main result via fixed point arguments and, on the other hand, can be the basis for a numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.F.: Sobolev Spaces. Academic Press, Elsevier (2003)

    MATH  Google Scholar 

  2. Alt H.-W.: Lineare Funktionalanalysis (5. Auflage). Springer, Berlin (2006)

    Google Scholar 

  3. Burton W.K., Cabrera N., Frank F.C.: The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. 243, 299–358 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Caginalp G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92, 205–245 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dorsch W., Christiansen S., Albrecht M., Hansson P.O., Bauser E., Strunk H.P.: Early growth stages of Ge0.85Si0.15 on Si(001) from Bi solution. Surf. Sci. 331-333, 896–901 (1995)

    Article  ADS  Google Scholar 

  6. Chalupecky V., Eck Ch., Emmerich H.: Computation of nonlinear multiscale coupling effects in liquid phase epitaxy. Eur. Phys. J. Special Topics 149, 1–17 (2007)

    Article  ADS  Google Scholar 

  7. Eck Ch., Emmerich H.: A two-scale model for liquid-phase epitaxy. Math. Methods Appl. Sci. 32(1), 12–40 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Eck Ch., Emmerich H.: Homogenization and two-scale models for liquid phase epitaxy. Eur. Phys. J. Special Topics 177, 5–21 (2009)

    Article  ADS  MATH  Google Scholar 

  9. Eck, C., Emmerich, H.: Liquid-phase epitaxy with elasticity. Preprint 197, DFG SPP 1095 (2006)

  10. Eck C., Kutter M., Sändig A.-M., Rohde Ch.: A two scale model for liquid phase epitaxy with elasticity: an iterative procedure. Z. Angew. Math. Mech. 93, 745–761 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Emmerich H.: Modeling elastic effects in epitaxial growth. Contin. Mech. Thermodyn. 15, 197–215 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Girault V., Raviart P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  13. Karma A., Plapp M.: Spiral surface growth without desorption. Phys. Rev. Lett. 81, 4444 (1998)

    Article  ADS  Google Scholar 

  14. Kutter, M.: A Two Scale Model for Liquid Phase Epitaxy with Elasticity. Dissertation, University of Stuttgart (2015)

  15. Liu F., Metiu H.: Stability and kinetics of step motion on crystal surfaces. Phys. Rev. E 49, 2601–2616 (1994)

    Article  ADS  Google Scholar 

  16. Lo T.S., Kohn R.V.: A new approach to the continuum modeling of epitaxial growth: slope selection, coarsening and the role of uphill current. Phys. D 161, 237–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lunardi A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  18. Maz’ya V., Rossmann J.: Elliptic Equations in Polyhedral Domains, vol. 162. American Mathematical Society, Mathematical Surveys and Monographs, Providence (2010)

    Book  MATH  Google Scholar 

  19. Otto F., Penzler P., Rätz A., Rump T., Voigt A.: A diffuse-interface approximation for step flow in epitaxial growth. Nonlinearity 17, 477–491 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  21. Redeker M., Eck Ch.: A fast and accurate adaptive solution strategy for two-scale models with continuous inter-scale dependencies. J. Comput. Phys. 240, 268–283 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Renardy M., Rogers R.C.: An Introduction to Partial Differential Equations, 2nd edn. Springer, New York (2004)

    MATH  Google Scholar 

  23. Russo G., Smereka P.: Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo. J. Comput. Phys. 214, 809–828 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Shanahan L.L., Spencer B.J.: A codimension-two free boundary problem for the equilibrium shapes of a small three-dimensional island in an epitaxially strained solid film. Interfaces Free Boundaries 4, 1–25 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Small M.B., Ghez R., Giess E.A.: Liquid phase epitaxy. In: Hurle, D.T.J. (ed.) Handbook of Crystal Growth, Vol. 3, pp. 223–253. North-Holland, Amsterdam (1994)

    Google Scholar 

  26. Temam R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  27. Villain J.: Continuum models of crystal-growth from atomic-beams with and without desorption. J. Phys. I 1, 19–42 (1991)

    Google Scholar 

  28. Zeidler E.: Nonlinear Functional Analysis and its Applications II/A, Linear Monotone Operators. Springer, New York (1990)

    Book  MATH  Google Scholar 

  29. Xiang Y.: Derivation of a continuum model for epitaxial growth with elasticity on vicinal surfaces. SIAM J. Appl. Math. 63(1), 241–258 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kutter.

Additional information

Communicated by Ralf Müller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutter, M., Rohde, C. & Sändig, AM. Well-posedness of a two-scale model for liquid phase epitaxy with elasticity. Continuum Mech. Thermodyn. 29, 989–1016 (2017). https://doi.org/10.1007/s00161-015-0462-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0462-1

Keywords

Navigation