Skip to main content

Advertisement

Log in

Host–pathogen interactions and prognosis of critically ill immunocompetent patients with pneumococcal pneumonia: the nationwide prospective observational STREPTOGENE study

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

To assess the relative importance of host and bacterial factors associated with hospital mortality in patients admitted to the intensive care unit (ICU) for pneumococcal community-acquired pneumonia (PCAP).

Methods

Immunocompetent Caucasian ICU patients with PCAP documented by cultures and/or pneumococcal urinary antigen (UAg Sp) test were included in this multicenter prospective study between 2008 and 2012. All pneumococcal strains were serotyped. Logistic regression analyses were performed to identify risk factors for hospital mortality.

Results

Of the 614 patients, 278 (45%) had septic shock, 270 (44%) had bacteremia, 307 (50%) required mechanical ventilation at admission, and 161 (26%) had a diagnosis based only on the UAg Sp test. No strains were penicillin-resistant, but 23% had decreased susceptibility. Of the 36 serotypes identified, 7 accounted for 72% of the isolates, with different distributions according to age. Although antibiotics were consistently appropriate and were started within 6 h after admission in 454 (74%) patients, 116 (18.9%) patients died. Independent predictors of hospital mortality in the adjusted analysis were platelets ≤ 100 × 109/L (OR, 7.7; 95% CI, 2.8–21.1), McCabe score ≥ 2 (4.58; 1.61–13), age > 65 years (2.92; 1.49–5.74), lactates > 4 mmol/L (2.41; 1.27–4.56), male gender and septic shock (2.23; 1.30–3.83 for each), invasive mechanical ventilation (1.78; 1–3.19), and bilateral pneumonia (1.59; 1.02–2.47). Women with platelets ≤ 100 × 109/L had the highest mortality risk (adjusted OR, 7.7; 2.8–21).

Conclusions

In critically ill patients with PCAP, age, gender, and organ failures at ICU admission were more strongly associated with hospital mortality than were comorbidities. Neither pneumococcal serotype nor antibiotic regimen was associated with hospital mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marrie TJ, Shariatzadeh MR (2007) Community-acquired pneumonia requiring admission to an intensive care unit: a descriptive study. Medicine (Baltimore) 86:103–111. https://doi.org/10.1097/MD.0b013e3180421c16

    Article  Google Scholar 

  2. Walden AP, Clarke GM, McKechnie S et al (2014) Patients with community acquired pneumonia admitted to European intensive care units: an epidemiological survey of the GenOSept cohort. Crit Care Lond Engl 18:R58. https://doi.org/10.1186/cc13812

    Article  Google Scholar 

  3. Drijkoningen JJC, Rohde GGU (2014) Pneumococcal infection in adults: burden of disease. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 20(Suppl 5):45–51. https://doi.org/10.1111/1469-0691.12461

    Article  Google Scholar 

  4. Mongardon N, Max A, Bouglé A et al (2012) Epidemiology and outcome of severe pneumococcal pneumonia admitted to intensive care unit: a multicenter study. Crit Care Lond Engl 16:R155. https://doi.org/10.1186/cc11471

    Article  Google Scholar 

  5. Naucler P, Darenberg J, Morfeldt E et al (2013) Contribution of host, bacterial factors and antibiotic treatment to mortality in adult patients with bacteraemic pneumococcal pneumonia. Thorax 68:571–579. https://doi.org/10.1136/thoraxjnl-2012-203106

    Article  PubMed  Google Scholar 

  6. Gattarello S, Borgatta B, Solé-Violán J et al (2014) Decrease in mortality in severe community-acquired pneumococcal pneumonia: impact of improving antibiotic strategies (2000–2013). Chest 146:22–31. https://doi.org/10.1378/chest.13-1531

    Article  PubMed  Google Scholar 

  7. Que Y-A, Virgini V, Lozeron ED et al (2015) Low C-reactive protein values at admission predict mortality in patients with severe community-acquired pneumonia caused by Streptococcus pneumoniae that require intensive care management. Infection 43:193–199. https://doi.org/10.1007/s15010-015-0755-0

    Article  CAS  PubMed  Google Scholar 

  8. Moine P, Vercken JB, Chevret S, Gajdos P, The French Study Group of Community-Acquired Pneumonia in ICU (1995) Severe community-acquired pneumococcal pneumonia. Scand J Infect Dis 27:201–206

    Article  CAS  PubMed  Google Scholar 

  9. Georges H, Leroy O, Vandenbussche C et al (1999) Epidemiological features and prognosis of severe community-acquired pneumococcal pneumonia. Intensive Care Med 25:198–206

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Vidal C, Ardanuy C, Tubau F et al (2010) Pneumococcal pneumonia presenting with septic shock: host- and pathogen-related factors and outcomes. Thorax 65:77–81. https://doi.org/10.1136/thx.2009.123612

    Article  CAS  PubMed  Google Scholar 

  11. Cillóniz C, Polverino E, Ewig S et al (2013) Impact of age and comorbidity on cause and outcome in community-acquired pneumonia. Chest 144:999–1007. https://doi.org/10.1378/chest.13-0062

    Article  PubMed  Google Scholar 

  12. Burgos J, Luján M, Larrosa MN et al (2015) The problem of early mortality in pneumococcal pneumonia: a study of risk factors. Eur Respir J 46:561–564. https://doi.org/10.1183/09031936.00034415

    Article  PubMed  Google Scholar 

  13. Mandell LA (2009) Severe community-acquired pneumonia (CAP) and the Infectious Diseases Society of America/American Thoracic Society CAP guidelines prediction rule: validated or not. Clin Infect Dis 48:386–388. https://doi.org/10.1086/596308

    Article  PubMed  Google Scholar 

  14. Société de Pathologie Infectieuse de Langue Française (2006) 15th consensus conference about management of lower respiratory tract infections in immunocompetent adult. Med Mal Infect 36:235–244

    Article  Google Scholar 

  15. The European Committe on Antimicrobial Susceptibility Testing. (2015) Breakpoints tables for interpretation of MICs and zone diameters. Version 5.0, 2015. http://www.eucast.org. Accessed 24 Oct 2018

  16. Varon E, Houssaye S, Grondin S et al (2006) Nonmolecular test for detection of low-level resistance to fluoroquinolones in Streptococcus pneumoniae. Antimicrob Agents Chemother 50:572–579. https://doi.org/10.1128/AAC.50.2.572-579.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Auburtin M, Wolff M, Charpentier J et al (2006) Detrimental role of delayed antibiotic administration and penicillin-nonsusceptible strains in adult intensive care unit patients with pneumococcal meningitis: the PNEUMOREA prospective multicenter study. Crit Care Med 34:2758–2765. https://doi.org/10.1097/01.CCM.0000239434.26669.65

    Article  CAS  PubMed  Google Scholar 

  18. Kalbfleisch J (1980) The statistical analysis of failure time data. Wiley, New York

    Google Scholar 

  19. Grabenstein JD, Musey LK (2014) Differences in serious clinical outcomes of infection caused by specific pneumococcal serotypes among adults. Vaccine 32:2399–2405. https://doi.org/10.1016/j.vaccine.2014.02.096

    Article  PubMed  Google Scholar 

  20. Varon E, Cohen R, Béchet S et al (2015) Invasive disease potential of pneumococci before and after the 13-valent pneumococcal conjugate vaccine implementation in children. Vaccine 33:6178–6185. https://doi.org/10.1016/j.vaccine.2015.10.015

    Article  PubMed  Google Scholar 

  21. Brueggemann AB, Griffiths DT, Meats E et al (2003) Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis 187:1424–1432. https://doi.org/10.1086/374624

    Article  CAS  PubMed  Google Scholar 

  22. Hanage WP, Kaijalainen TH, Syrjänen RK et al (2005) Invasiveness of serotypes and clones of Streptococcus pneumoniae among children in Finland. Infect Immun 73:431–435. https://doi.org/10.1128/IAI.73.1.431-435.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sá-Leão R, Pinto F, Aguiar S et al (2011) Analysis of invasiveness of pneumococcal serotypes and clones circulating in Portugal before widespread use of conjugate vaccines reveals heterogeneous behavior of clones expressing the same serotype. J Clin Microbiol 49:1369–1375. https://doi.org/10.1128/JCM.01763-10

    Article  PubMed  PubMed Central  Google Scholar 

  24. Harboe ZB, Thomsen RW, Riis A et al (2009) Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Med 6:e1000081. https://doi.org/10.1371/journal.pmed.1000081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weinberger DM, Harboe ZB, Sanders EAM et al (2010) Association of serotype with risk of death due to pneumococcal pneumonia: a meta-analysis. Clin Infect Dis 51:692–699. https://doi.org/10.1086/655828

    Article  PubMed  PubMed Central  Google Scholar 

  26. Coz Yataco A, Jaehne AK, Rivers EP (2017) Protocolized early sepsis care is not only helpful for patients: it prevents medical errors. Crit Care Med 45:464–472. https://doi.org/10.1097/CCM.0000000000002237

    Article  PubMed  Google Scholar 

  27. Liapikou A, Ferrer M, Polverino E et al (2009) Severe community-acquired pneumonia: validation of the Infectious Diseases Society of America/American Thoracic Society guidelines to predict an intensive care unit admission. Clin Infect Dis 48:377–385. https://doi.org/10.1086/596307

    Article  PubMed  Google Scholar 

  28. Ewig S (2011) Gains and limitations of predictive rules for severe community-acquired pneumonia. Clin Infect Dis 53:512–514. https://doi.org/10.1093/cid/cir469

    Article  PubMed  Google Scholar 

  29. Krone CL, van de Groep K, Trzciński K et al (2014) Immunosenescence and pneumococcal disease: an imbalance in host–pathogen interactions. Lancet Respir Med 2:141–153. https://doi.org/10.1016/S2213-2600(13)70165-6

    Article  PubMed  Google Scholar 

  30. Grau I, Ardanuy C, Cubero M et al (2016) Declining mortality from adult pneumococcal infections linked to children’s vaccination. J Infect 72:439–449. https://doi.org/10.1016/j.jinf.2016.01.011

    Article  PubMed  Google Scholar 

  31. Gutiérrez F, Masiá M, Mirete C et al (2006) The influence of age and gender on the population-based incidence of community-acquired pneumonia caused by different microbial pathogens. J Infect 53:166–174. https://doi.org/10.1016/j.jinf.2005.11.006

    Article  PubMed  Google Scholar 

  32. Kaplan V, Clermont G, Griffin MF et al (2003) Pneumonia: still the old man’s friend? Arch Intern Med 163:317–323

    Article  PubMed  Google Scholar 

  33. Angele MK, Schwacha MG, Ayala A, Chaudry IH (2000) Effect of gender and sex hormones on immune responses following shock. Shock Augusta Ga 14:81–90

    Article  CAS  Google Scholar 

  34. Kadioglu A, Cuppone AM, Trappetti C et al (2011) Sex-based differences in susceptibility to respiratory and systemic pneumococcal disease in mice. J Infect Dis 204:1971–1979. https://doi.org/10.1093/infdis/jir657

    Article  CAS  PubMed  Google Scholar 

  35. Arnold FW, Wiemken TL, Peyrani P et al (2013) Outcomes in females hospitalised with community-acquired pneumonia are worse than in males. Eur Respir J 41:1135–1140. https://doi.org/10.1183/09031936.00046212

    Article  PubMed  Google Scholar 

  36. Brogly N, Devos P, Boussekey N et al (2007) Impact of thrombocytopenia on outcome of patients admitted to ICU for severe community-acquired pneumonia. J Infect 55:136–140. https://doi.org/10.1016/j.jinf.2007.01.011

    Article  PubMed  Google Scholar 

  37. van den Boogaard FE, Schouten M, de Stoppelaar SF et al (2015) Thrombocytopenia impairs host defense during murine Streptococcus pneumoniae pneumonia. Crit Care Med 43:e75–e83. https://doi.org/10.1097/CCM.0000000000000853

    Article  CAS  PubMed  Google Scholar 

  38. Keane C, Tilley D, Cunningham A et al (2010) Invasive Streptococcus pneumoniae trigger platelet activation via Toll-like receptor 2. J Thromb Haemost JTH 8:2757–2765. https://doi.org/10.1111/j.1538-7836.2010.04093.x

    Article  CAS  PubMed  Google Scholar 

  39. Costa JL, Reese TS, Murphy DL (1974) Serotonin storage in platelets: estimation of storage-packet size. Science 183:537–538

    Article  CAS  PubMed  Google Scholar 

  40. Snell LD, Glanz J, Tabakoff B, WHO/ISBRA Study on State and Trait Markers ofAlcohol Use and Dependence Investigators (2002) Relationships between effects of smoking, gender, and alcohol dependence on platelet monoamine oxidase-B: activity, affinity labeling, and protein measurements. Alcohol Clin Exp Res 26:1105–1113

    Article  CAS  PubMed  Google Scholar 

  41. Buckley NA, Dawson AH, Isbister GK (2014) Serotonin syndrome. BMJ 348:g1626

    Article  CAS  PubMed  Google Scholar 

  42. Lee JS, Giesler DL, Gellad WF, Fine MJ (2016) Antibiotic therapy for adults hospitalized with community-acquired pneumonia: a systematic review. JAMA 315:593–602. https://doi.org/10.1001/jama.2016.0115

    Article  CAS  PubMed  Google Scholar 

  43. Sligl WI, Hoang H, Eurich DT et al (2013) Macrolide use in the treatment of critically ill patients with pneumonia: incidence, correlates, timing and outcomes. Can J Infect Dis Med Microbiol J Can Mal Infect Microbiol Medicale 24:e107–e112

    Article  Google Scholar 

  44. Paul M, Nielsen AD, Gafter-Gvili A et al (2007) The need for macrolides in hospitalised community-acquired pneumonia: propensity analysis. Eur Respir J 30:525–531. https://doi.org/10.1183/09031936.00031007

    Article  CAS  PubMed  Google Scholar 

  45. Sligl WI, Asadi L, Eurich DT et al (2014) Macrolides and mortality in critically ill patients with community-acquired pneumonia: a systematic review and meta-analysis. Crit Care Med 42:420–432. https://doi.org/10.1097/CCM.0b013e3182a66b9b

    Article  CAS  PubMed  Google Scholar 

  46. Yoshioka D, Kajiwara C, Ishii Y et al (2016) Efficacy of β-lactam-plus-macrolide combination therapy in a mouse model of lethal pneumococcal pneumonia. Antimicrob Agents Chemother 60:6146–6154. https://doi.org/10.1128/AAC.01024-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Postma DF, van Werkhoven CH, van Elden LJR et al (2015) Antibiotic treatment strategies for community-acquired pneumonia in adults. N Engl J Med 372:1312–1323. https://doi.org/10.1056/NEJMoa1406330

    Article  CAS  PubMed  Google Scholar 

  48. Slotved H-C, Dalby T, Harboe ZB et al (2016) The incidence of invasive pneumococcal serotype 3 disease in the Danish population is not reduced by PCV-13 vaccination. Heliyon 2:e00198. https://doi.org/10.1016/j.heliyon.2016.e00198

    Article  PubMed  PubMed Central  Google Scholar 

  49. Burgos J, Luján M, Larrosa MN et al (2014) Risk factors for respiratory failure in pneumococcal pneumonia: the importance of pneumococcal serotypes. Eur Respir J 43:545–553. https://doi.org/10.1183/09031936.00050413

    Article  PubMed  Google Scholar 

  50. Mohler J, Azoulay-Dupuis E, Amory-Rivier C et al (2003) Streptococcus pneumoniae strain-dependent lung inflammatory responses in a murine model of pneumococcal pneumonia. Intensive Care Med 29:808–816. https://doi.org/10.1007/s00134-003-1699-x

    Article  PubMed  Google Scholar 

  51. Corrales-Medina VF, Musher DM, Shachkina S, Chirinos JA (2013) Acute pneumonia and the cardiovascular system. Lancet Lond Engl 381:496–505. https://doi.org/10.1016/S0140-6736(12)61266-5

    Article  Google Scholar 

Download references

Acknowledgements

We thank the ICU physicians who contributed to collect data for the study: Nadia Anguel (CHU Bicêtre, Le Kremlin-Bicêtre, France); Christian Brun-Buisson (Hôpital H. Mondor, Créteil, France); M. Castaner (Hôpital Sud-Sainte Marguerite, Marseille, France); Charles Cerf (Hôpital Foch, Suresnes, France); Christine Cheval (CH Hyères, France); Bernard Clair (Hôpital R. Poincaré, Garches, France); Yves Cohen (Hôpital Avicenne, Bobigny, France); Jean-Michel Constantin (CHU Hôtel Dieu, Clermont Ferrand, France); Aurélie Cravoisy-Brovic (Hôpital Central, Nancy, France); Arnaud Delahaye (CH Rodez, France); N. Fadel (CH Rambouillet, France); Muriel Fartoukh and Antoine Parrot (Hôpital Tenon, Paris, France); Christian Floriot and Christophe Bein (CHI Haute Saône, Vesoul, France); Hugues Georges (CH Tourcoing, France); Claude Gervais (Hôpital Caremeau, Nîmes, France); Dany Goldran-Toledano (Hôpital de Gonesse, France); Jan Hayon and Jean-Claude Lacherade (CHI Poissy-Saint Germain en Laye, France); Kada Klouche (CHU Lapeyronie, Montpellier, France); Sophie Marqué (CHU Rennes, France); Jean-Marc Mazou (CH Dax, France); Hervé Mentec (CH V. Dupouy, Argenteuil, France); Joy Yoganaden Mootien (CH Mulhouse, France); Bruno Mourvillier (GH Bichat, Paris, France); Jean Nouveau (Hôpital Monod, Le Havre, France); Ana Novara (HEGP, Paris, France); Bernard Page (Hôpital A. Paré, Boulogne, France); Antoine Rabbat (Hôtel Dieu, Paris, France); Marie Thuong (CH Delafontaine, Saint-Denis, France); Martial Thyrault (CHG Longjumeau, France); Jean-François Timsit (CHU A. Michaillon, Grenoble, France); Jean-Marie Tonnelier (CHU La Cavale Blanche, Brest, France); and Olivier Zambon (CHU, Nantes, France).

We are grateful to the microbiologists who sent the pneumococcal strains to the French National Reference Centre for Pneumococci (FNRCP): Guillaume Arlet (Hôpital Tenon, Paris, France); Laurence Armand-Lefevre (Hôpital Bichat, Paris, France); Régine Baraduc (CHU Gabriel Montpied, Clermont Ferrand, France); Gilles Berthelot (CH Dieppe, France); Martine Bingen (Hôpital de Gonesse, France); Michel Brun and Christian Carrière (CHU Lapeyronie, Montpellier, France); Annie Buu-Hoi and Emmanuelle Varon (Hôpital Européen Georges Pompidou, Paris, France); Violaine Caillaux (CH Tourcoing, France); Christian Cattoen (CH Valenciennes, France); Guy Chambreuil (CHD Les Oudairies, La Roche sur Yon, France); Chantal Chaplain (CH Delafontaine, Saint-Denis, France); Hubert Chardon (CH du Pays d’Aix, Aix en Provence, France); Mireille Cheron, Michel Leneveu, and Eric Vallée (CHI Poissy, St Germain en Laye, France); Vincent Chieux (Hôpital L. Pasteur, Chartres, France); M.D. Conroy (Hôpital Central, Nancy, France); Jacques Croizé (CHU A. Michaillon, Grenoble, France); Alexandre Doloy and Hélène Poupet (Hôpital Cochin, Paris, France); Pierre-Yves Donnio (CHU, Rennes, France); Florence Doucet-Populaire (Hôpital A. Béclère, Clamart, France); AnneFarges (CHG Longjumeau, France); Jean-Louis Gaillard (Hôpital R. Poincaré, Garches, France); Alain Gravet (CH Mulhouse, France); Bernadette Grignon (CHU J. Bernard, Poitiers, France); Patrick Honderlick (Hôpital Foch, Suresnes, France); Françoise Jaureguy (Hôpital Avicenne, Bobigny, France); Marie-Emmanuelle Juvin (CHU Nantes, France); Marie Kempf (CHU, Angers, France); Marie-Dominique Kitzis (Hôpital St Joseph, Paris, France); Jean-Pierre Laffargue (CH Dax, France); Jean-Philippe Lavigne (Hôpital Caremeau, Nîmes, Frances); Alban Le Monnier (CH Mignot, Le Chesnay, France); Françoise Le Turdu (CH V. Dupouy, Argenteuil, France); P. Legrand (Hôpital H. Mondor, Créteil, France); PierreYves Levy (Hôpital La Timone, Marseille, France); Julien Loubinoux (Hôpital Hôtel Dieu, Paris, France); Morel (Hôpital Monod, Le Havre, France); M.C. Ploy and Delphine Chainier (CHU Dupuytren, Limoges, France); Patrick Pina (CH Rambouillet, France); Didier Poisson (Hôpital La Source, Orléans, France); Annie Raoult (CH Hyères, France); Laurent Raskine (Hôpital Lariboisière, Paris, France); Micheline Roussel-Delvallez (Hôpital A. Calmette, Lille, France); Royer (CHI Haute Saône, Vesoul, France); Cyril Serizer (CH Sud Essonne, Etampes, France); V. Sivadon-Tardy (Hôpital A. Paré, Boulogne, France); Colette Spicq (CHU Bicêtre, Le Kremlin Bicêtre, France); Didier Tandet (CHU La Cavale Blanche, Brest, France); Jacques Tankovic (Hôpital St Antoine, Paris, France); Véronique Vernet-Garnier (Hôpital R. Debré, Reims, France); and Joseph Wattine (CH Rodez, France).

We are indebted to Nathalie Marin and the Clinical Research Unit at the Cochin Teaching Hospital (Paris, France) for centralizing and processing the study data and to A. Wolfe, MD, for helping to prepare the manuscript.

Funding

This study was funded by a 2006 grant from the French public research agency PHRC (#07/061). The study sponsors were two public healthcare and research agencies, namely, the Assistance Publique Hôpitaux de Paris (AP-HP) and the Délégation à la Recherche Clinique et au Développement (DRCD).

Author information

Authors and Affiliations

Authors

Contributions

JPB, EV and JPM are the study guarantors and designed the study; EV and RP extracted and managed the data; RP performed the statistical analysis; and JPB, EV, RP, and JPM wrote the manuscript. All authors included more than 10 patients in the study. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jean-Pierre Bedos.

Ethics declarations

Conflicts of interest

None of the authors have any conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedos, JP., Varon, E., Porcher, R. et al. Host–pathogen interactions and prognosis of critically ill immunocompetent patients with pneumococcal pneumonia: the nationwide prospective observational STREPTOGENE study. Intensive Care Med 44, 2162–2173 (2018). https://doi.org/10.1007/s00134-018-5444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-018-5444-x

Keywords

Navigation