Skip to main content
Log in

Robotics – „smart medicine“ in der minimal-invasiven gynäkologischen Chirurgie

Robotics – “smart medicine” in minimally invasive gynecological surgery

  • Gynäkologie aktuell
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Roboterunterstützung findet zunehmende Verbreitung in der minimal-invasiven Chirurgie. Schnelle Erlernbarkeit, intuitive Bedienung, verbesserte Ergonomie und die Integration künstlicher Intelligenz (AI) erweitern die Möglichkeiten der klassischen Laparoskopie auf ein deutlich größeres Patientinnenkollektiv und machen sie zukunftsfähig. Ausbildung und Training erfolgen nach neuen didaktischen Prinzipien, was vergleichbare, wissenschaftlich valide Behandlungsergebnisse erwarten lässt. Konkurrenzsysteme kündigen weiteren Fortschritt an und lassen eine Kostensenkung erwarten. Roboterunterstütztes Operieren wird zur chirurgischen Routine.

Abstract

Robotic-assisted procedures are increasingly being applied in minimally invasive surgery. Ease of learning, intuitive use, optimized ergonomics and an interface for the implementation of artificial intelligence (AI) expand the possibilities of classical straight stick laparoscopy to a larger group of patients and make it fit for the future. Education and training are carried out according to new didactic principles, so that comparable scientifically valid treatment results can be expected. Competitive robotic systems promise further progress and a cost reduction is to be expected. Robotic-assisted surgery is becoming part of routine surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Bhattacharya K (2007) Kurt Semm: A laparoscopic crusader. J Min Access Surg 3(1):35–36

    Article  CAS  Google Scholar 

  2. George E, Brand TC, LaPorta A, Marescaux J, Satava RM (2018) Origins of robotic surgery: from skepticism to standard of care. JSLS 22(4):e2018.00039

    Article  Google Scholar 

  3. Lauterbach R, Matanes E, Lowenstein L (2017) Review of robotic surgery in gynecology – the future is here. Rambam Maimonides Med J 8(2):e19

    Article  Google Scholar 

  4. Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M, Butner SE, Smith MK (2001) Transatlantic robot-assisted telesurgery. Nature 413(6854):379–380

    Article  CAS  Google Scholar 

  5. Kawaguchi M, Shimada M, Ishikawa N, Watanabe G (2016) Underwater robotic suturing. Minim Invasive Ther Allied Technol 25(3):129–133. https://doi.org/10.3109/13645706.2016.1141103

    Article  PubMed  Google Scholar 

  6. Takács A, Nagy DA, Rudas IJ, Haidegger T (2016) Origins of surgical robotics: from space to the operating room. Acta Polytech Hung 13:13–30

    Google Scholar 

  7. Lim PC, Crane JT, English EJ et al (2016) Multicenter analysis comparing robotic, open, laparoscopic, and vaginal hysterectomies performed by high-volume surgeons for benign indications. Int J Gynaecol Obstet 133(3):359–364

    Article  Google Scholar 

  8. Shao-Hui C et al (2016) Robot-assisted versus conventional laparoscopic surgery for endometrial cancer staging: a meta-analysis. Taiwan J Obstet Gynecol 55(4):488–494

    Article  Google Scholar 

  9. Scandola M, Grespan L, Vicentini M, Fiorini P (2011) Robot-assisted laparoscopic hysterectomy vs traditional laparoscopic hysterectomy: five metaanalyses. J Minim Invasive Gynecol 18(6):705–715

    Article  Google Scholar 

  10. Shi C, Gao Y, Yang Y, Zhang L, Yu J, Zhang T (2019) Comparison of efficacy of robotic surgery, laparoscopy, and laparotomy in the treatment of ovarian cancer: a meta-analysis. World J Surg Onc 17(1):162

    Article  Google Scholar 

  11. Lawrie TA, Liu H, Lu D et al (2019) Robot-assisted surgery in gynaecology. Cochrane Database Syst Rev 4:CD11422

    PubMed  Google Scholar 

  12. Stone P, Burnett A, Burton B, Roman J (2010) Overcoming extreme obesity with robotic surgery. Int J Med Robot 6(4):382–385

    Article  Google Scholar 

  13. Cosin JA, Brett Sutherland MA, Westgate CT, Fang H (2016) Complications of robotic gynecologic surgery in the severely morbidly obese. Ann Surg Oncol 23(12):4035–4041

    Article  Google Scholar 

  14. Dal Moro F (2018) How robotic surgery is changing our understanding of anatomy. Arab J Urol 16(3):297–301

    Article  Google Scholar 

  15. Yi J (2018) Robotic management of pelvic organ prolapse. In: El-Ghobashy A, Ind T, Persson J, Magrina J (Hrsg) Textbook of gynecologic robotic surgery. Springer, Cham, S 73–81

    Chapter  Google Scholar 

  16. Dharia Patel SP, Steinkampf MP, Whitten SJ, Malizia BA (2008) Robotic tubal anastomosis: surgical technique and cost effectiveness. Fertil Steril 90(4):1175–1179

    Article  Google Scholar 

  17. Oktay K, Kawahara T, Taylan E, Cillo G (2018) Robot-assisted orthotopic and heterotopic ovarian tissue transplantation techniques. Fertil Steril 110(4):e425

    Article  Google Scholar 

  18. Gala RB, Margulies R, Steinberg A et al (2014) Systematic review of robotic surgery in gynecology: robotic techniques compared with laparoscopy and laparotomy. J Minim Invasive Gynecol 21(3):353–361

    Article  Google Scholar 

  19. Torng P‑L, Pan S‑P, Hwang J‑S, Shih H‑J, Chen C‑L (2017) Learning curve in concurrent application of laparoscopic and robotic-assisted hysterectomy with lymphadenectomy in endometrial cancer. Taiwan J Obstet Gynecol 56(6):781–787

    Article  Google Scholar 

  20. Leijte E, de Blaauw I, van Workum F, Rosman C, Botden S (2019) Robot assisted versus laparoscopic suturing learning curve in a simulated setting. Surg Endosc. https://doi.org/10.1007/s00464-019-07263-2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sridhar AN, Briggs TP, Kelly JD, Nathan S (2017) Training in robotic surgery—an overview. Curr Urol Rep 18(8):58

    Article  Google Scholar 

  22. Rusch P et al (2019) Recommendations for a standardised educational program in robot assisted gynaecological surgery: consensus from the Society of European Robotic Gynaecological Surgery (SERGS). Facts Views Vis Obgyn 11(1):29–41

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen R, Rodrigues Armijo P, Krause C, Siu K‑C, Oleynikov D (2020) A comprehensive review of robotic surgery curriculum and training for residents, fellows, and postgraduate surgical education. Surg Endosc 34(1):361–367

    Article  Google Scholar 

  24. Schreuder HWR, Persson JEU, Wolswijk RGH, Ihse I, Schijven MP, Verheijen RHM (2014) Validation of a novel virtual reality simulator for robotic surgery. ScientificWorldJournal. https://doi.org/10.1155/2014/507076

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rusch P, Verheijen RHM (2018) The Society of European Robotic Gynaecological Surgery (SERGS) Pilot Curriculum for robot-assisted gynaecological surgery: authors’ reply to a letter to the editor. Arch Gynecol Obstet 297(6):1597

    Article  Google Scholar 

  26. Pradarelli JC, Thornton JP, Dimick JB (2017) Who is responsible for the safe introduction of new surgical technology? An important legal precedent from the da Vinci surgical system trials. JAMA Surg 152(8):717–718

    Article  Google Scholar 

  27. Sheetz KH, Dimick JB (2019) Is it time for safeguards in the adoption of robotic surgery? JAMA 321(20):1971–1972

    Article  Google Scholar 

  28. Holst D, Kowalewski TM, White LW et al (2015) Crowd-sourced assessment of technical skills: differentiating animate surgical skill through the wisdom of crowds. J Endourol 29(10):1183–1188

    Article  Google Scholar 

  29. Vernez SL, Huynh V, Osann K, Okhunov Z, Landman J, Clayman RV (2017) C‑SATS: assessing surgical skills among urology residency applicant. J Endourol 31(S1):S95–S100

    Article  Google Scholar 

  30. Aghazadeh MA, Jayaratna IS, Hung AJ et al (2015) External validation of Global Evaluative Assessment of Robotic Skills (GEARS). Surg Endosc 29(11):3261–3266

    Article  Google Scholar 

  31. Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ (2012) Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol 187(1):247–252

    Article  Google Scholar 

  32. Collins JW, Verhagen H, Mottrie A, Wiklund PN (2015) Application and integration of live streaming from leading robotic centres can enhance surgical education. Eur Urol 68(5):747–749

    Article  Google Scholar 

  33. Pilka R et al (2017) Laparoscopic and robotic sacropexy: retrospective review of learning curve experiences and follow-up. Ceska Gynekol 82:261–267

    CAS  PubMed  Google Scholar 

  34. Stomberg MW, Tronstad S‑E, Hedberg K et al (2010) Work-related musculoskeletal disorders when performing laparoscopic surgery. Surg Laparosc Endosc Percutan Tech 20(1):49–53

    Article  Google Scholar 

  35. Plerhoples TA, Hernandez-Boussard T, Wren SM (2012) The aching surgeon: a survey of physical discomfort and symptoms following open, laparoscopic, and robotic surgery. J Robotic Surg 6(1):65–72

    Article  Google Scholar 

  36. Berguer R, Smith W (2006) An ergonomic comparison of robotic and laparoscopic technique: the influence of surgeon experience and task complexity. J Surg Res 134(1):87–92

    Article  Google Scholar 

  37. Zihni AM, Ohu I, Cavallo JA, Cho S, Awad MM (2014) Ergonomic analysis of robot-assisted and traditional laparoscopic procedures. Surg Endosc 28(12):3379–3384

    Article  Google Scholar 

  38. Hurley AM, Kennedy PJ, O’Connor L et al (2015) SOS save our surgeons: stress levels reduced by robotic surgery. Gynecol Surg 12(3):197–206

    Article  Google Scholar 

  39. Fergo C, Burcharth J, Pommergaard H‑C, Kildebro N, Rosenberg J (2017) Three-dimensional laparoscopy vs 2‑dimensional laparoscopy with high-definition technology for abdominal surgery: a systematic review. Am J Surg 213(1):159–170

    Article  Google Scholar 

  40. Kimmig R, Buderath P, Rusch P, Aktas B (2017) Technique of ICG-guided Targeted Compartmental Pelvic Lymphadenectomy (TCL) combined with Pelvic Peritoneal Mesometrial Resection (PMMR) for locoregional control of endometrial cancer—a proposal. Gynecol Oncol Rep 20:125–126

    Article  Google Scholar 

  41. Tokas T, Gözen AS, Avgeris M et al (2017) Combining of ETHOS operating ergonomic platform, three-dimensional laparoscopic camera, and radius surgical system manipulators improves ergonomy in urologic laparoscopy: comparison with conventional laparoscopy and da Vinci in a Pelvi trainer. Eur Urol Focus 3(4–5):413–420

    Article  Google Scholar 

  42. Brodie A, Vasdev N (2018) The future of robotic surgery. Ann R Coll Surg Engl 100(Suppl 7):4–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Rusch or Rainer Kimmig.

Ethics declarations

Interessenkonflikt

P. Rusch gibt folgenden Interessenkonflikt an: Advisory Board Medtronic, SERGS-Fellowship. R. Kimmig gibt folgende Interessenkonflikte an: Proctoring, Kurse und Vorträge für Intuitive Surgical Inc., Advisory Board Medtronic, Reisekosten CMR, Präsident SERGS, Kongresspräsident Rom IGCS.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

T. Fehm, Düsseldorf

L. Kiesel, Münster

R. Kimmig, Essen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusch, P., Kimmig, R. Robotics – „smart medicine“ in der minimal-invasiven gynäkologischen Chirurgie. Gynäkologe 53, 607–613 (2020). https://doi.org/10.1007/s00129-020-04614-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-020-04614-2

Schlüsselwörter

Keywords

Navigation