Skip to main content

Advertisement

Log in

Total Mercury in Six Antarctic Notothenioid Fishes

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

We analyzed white muscle samples from six species of Antarctic fish (suborder Notothenioidei) collected in 2011 from McMurdo Sound, Ross Sea, Antarctica, to assess levels of total mercury (THg). Gymnodraco acuticeps and Trematomus bernacchii exhibited the highest concentrations of THg followed by Trematomus pennellii, Trematomus nicolai, Trematomus newnesi and Pagothenia borchgrevinki, (71.3, 53.9 ± 32.1, 45.8 ± 27.3, 37.2 ± 18.6, 35.7 ± 23.6, and 21.9 ± 2.8 ng/g wet weight, respectively). The results from this study suggest that THg has the potential to bioaccumulate from various marine Antarctic ecosystems into biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam MGM, Tanaka A, Allinson G, Laurenson LJB, Stagnitti F, Snow ET (2002) A comparison of trace element concentrations in cultured and wild carp (Cyprinus carpio) of Lake Kasumigaura, Japan. Ecotoxicol Environ Saf 53(3):348–354

    Article  CAS  Google Scholar 

  • Aronson RB, Thatje S, McClintock JB, Hughes KA (2011) Anthropogenic impacts on marine ecosystems. Ann NY Acad Sci 1223:82–107

    Article  Google Scholar 

  • Bargagli R (2006) Antarctic ecosystems: environmental contamination, climate change, and human impact. Springer, Berlin

    Google Scholar 

  • Bargagli R, Monaci F, Sanchez-Hernandez JC, Cateni D (1998) Biomagnification of mercury in an Antarctic marine coastal food web. Mar Ecol Prog Ser 169:65–76

    Article  CAS  Google Scholar 

  • Blus LJ (2011) DDT, DDD, and DDE in Birds. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations, 2nd edn. CRC Press, New York, pp 425–446

    Chapter  Google Scholar 

  • Bogillo V, Bazylevska M (2008) Variations of organochlorine contaminants in Antarctica. In: The fate of persistent organic pollutants in the environment. NATO Science for Peace and Security Series. Springer, Netherlands, pp 251–267

  • DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, pp 279–331

    Google Scholar 

  • Eastman JT, McCune AR (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock? J Fish Biol 57:84–102

    Google Scholar 

  • EPA (1999) The national survey of mercury concentrations in fish: data base summary 1990–1995. EPA-823-R-99-014. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Focardi S, Lari L, Marsili L (1992) PCB congeners, DDT’s and hexachlorobenzene in Antarctic fish from Terra Nova Bay (Ross Sea). Antarct Sci 4(2):151–154

    Article  Google Scholar 

  • Geisz HN, Dickhut RM, Cochran MA, Fraser WR, Ducklow HW (2008) Melting glaciers: a probable source of DDT to the Antarctic marine ecosystem. Environ Sci Technol 42:3958–3962

    Article  CAS  Google Scholar 

  • Gloss SP, Grieb TM, Driscoll CT, Schofield CL, Baker JP, Landers D et al (1990) Mercury levels in fish from the upper peninsula of Michigan (ELS subregion 2B) in relation to lake acidity. EPA-600/3–90–068. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Gon O (1990) Bathydraconidae. P. 364–380. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, p 462

    Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  Google Scholar 

  • Honda K, Yamamoto Y, Tatsukawa R (1987) Distribution of heavy metals in Antarctic marine ecosystem. Polar Biol 1:184–187

    Google Scholar 

  • La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338

    Article  Google Scholar 

  • Maggi C, Berducci MT, Bianchi J, Giani M, Campanella L (2009) Methylmercury determination in marine sediment and organisms by direct mercury analyser. Anal Chim Acta 641:32–36

    Article  CAS  Google Scholar 

  • Moore CW, Obrist D, Steffen A, Staebler RM, Douglas TA, Richter A, Nghiem SV (2014) Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice. Nature 506:81–84

    Article  CAS  Google Scholar 

  • Seelye JG, Hasselberg RJ, Mac MJ (1982) Accumulation by fish of contaminants released from dredged sediments. Environ Sci Technol 16:459–464

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1999) Method 1631, revision B: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. EPA-821-R-99–005. Office of Water, Washington, DC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan J. P. Wintle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wintle, N.J.P., Sleadd, I.M., Gundersen, D.T. et al. Total Mercury in Six Antarctic Notothenioid Fishes. Bull Environ Contam Toxicol 95, 557–560 (2015). https://doi.org/10.1007/s00128-015-1594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-015-1594-5

Keywords

Navigation