Skip to main content
Log in

Proterozoic low-sulfidation epithermal Au-Ag mineralization in the Mallery Lake area, Nunavut, Canada

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract.

The Mallery Lake area contains pristine examples of ancient precious metal-bearing low-sulfidation epithermal deposits. The deposits are hosted by rhyolitic flows of the Early Proterozoic Pitz Formation, but are themselves apparently of Middle Proterozoic age. Gold mineralization occurs in stockwork quartz veins that cut the rhyolites, and highest gold grades (up to 24 g/t over 30 cm) occur in the Chalcedonic Stockwork Zone. Quartz veining occurs in two main types: barren A veins, characterized by fine- to coarse-grained comb quartz, with fluorite, calcite, and/or adularia; and mineralized B veins, characterized by banded chalcedonic silica and fine-grained quartz, locally intergrown with fine-grained gold or electrum. A third type of quartz vein (C), which crosscuts B veins at one locality, is characterized by microcrystalline quartz intergrown with fine-grained hematite and rare electrum. Fluid inclusions in the veins occur in two distinct assemblages. Assemblage 1 inclusions represent a moderate temperature (Th=150 to 220 °C), low salinity (~1 eq. wt% NaCl, with trace CO2), locally boiling fluid; this fluid type is found in both A and B veins and is thought to have been responsible for Au-Ag transport and deposition. Assemblage 2 inclusions represent a lower temperature (Th=90 to 150 °C), high salinity calcic brine (23 to 31 wt% CaCl2-NaCl), which occurs as primary inclusions only in the barren A veins. Assemblage 1 and 2 inclusions occur in alternating quartz growth bands in the A-type veins, where they appear to represent alternating fluxes of dilute fluid and local saline groundwater. No workable primary fluid inclusions were observed in the C veins. The A-vein quartz yields δ18O values from 8.3 to 14.5‰ (average=10.9±1.7‰ [1σ], n=30), whereas δ18O values for B-vein quartz range from 11.2 to 14.0‰ (average=13.0±0.9‰, n=12). Calculated δ18OH2O values for the dilute mineralizing fluid from B veins range from –2.6 to 0.2‰ (average=–0.8±0.9‰, n=12) and are consistent with a dominantly meteoric origin. No values could be calculated for the brine, however, because all A-vein quartz samples contain mixed fluid inclusion populations. However, the fact that A-vein quartz samples extend to lower δ18O values than the B veins suggests that the brine had a lighter isotopic signature relative to the dilute fluid. Hydrogen isotopic ratios of fluid inclusion waters extracted from eleven quartz samples of both vein types range from δDFI =–56 to –134‰, but show no particular correlation with vein type. In most respects, the mineralogical and fluid characteristics of the Mallery Lake system are comparable to those of Phanerozoic low-sulfidation deposits, and although the presence of high salinity brines is unusual in such deposits, it is not unknown (e.g., Creede, Colorado). In addition, one of the few other examples of well-preserved, Precambrian, low-sulfidation epithermal deposits, from the Central Pilbara tectonic zone, Australia, contains a similarly bimodal fluid assemblage. The significance of these saline brines is not clear, but from this study we infer that they were not directly involved with Au-Ag transport or deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, W., Richards, J., Nesbitt, B. et al. Proterozoic low-sulfidation epithermal Au-Ag mineralization in the Mallery Lake area, Nunavut, Canada. Min Dep 36, 442–457 (2001). https://doi.org/10.1007/s001260100181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001260100181

Keywords

Navigation