Skip to main content

Advertisement

Log in

CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Obesity-induced inflammation is initiated by the recruitment of macrophages into adipose tissue. The recruited macrophages, called adipose tissue macrophages, secrete several proinflammatory cytokines that cause low-grade systemic inflammation and insulin resistance. The aim of this study was to find macrophage-recruiting factors that are thought to provide a crucial connection between obesity and insulin resistance.

Methods

We used chemotaxis assay, reverse phase HPLC and tandem MS analysis to find chemotactic factors from adipocytes. The expression of chemokines and macrophage markers was evaluated by quantitative RT-PCR, immunohistochemistry and FACS analysis.

Results

We report our finding that the chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal cell-derived factor 1), identified from 3T3-L1 adipocyte conditioned medium, induces monocyte migration via its receptor chemokine (C-X-C motif) receptor 4 (CXCR4). Diet-induced obese mice demonstrated a robust increase of CXCL12 expression in white adipose tissue (WAT). Treatment of obese mice with a CXCR4 antagonist reduced macrophage accumulation and production of proinflammatory cytokines in WAT, and improved systemic insulin sensitivity.

Conclusions/interpretation

In this study we found that CXCL12 is an adipocyte-derived chemotactic factor that recruits macrophages, and that it is a required factor for the establishment of obesity-induced adipose tissue inflammation and systemic insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATM:

Adipose tissue macrophages

CCL2:

Chemokine (C-C motif) ligand 2

CCR2:

Chemokine (C-C motif) receptor 2

CLS:

Crown-like structures

CM:

Conditioned medium

CXCL12:

Chemokine (C-X-C motif) ligand 12

CXCR4:

Chemokine (C-X-C motif) receptor 4

DIO:

Diet-induced obese

HFD:

High-fat diet

KO:

Knockout

MCP1:

Monocyte chemoattractant protein 1

MIF:

Macrophage migration factor

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NCD:

Normal chow diet

RP:

Reverse phase

SCX:

Strong cation-exchange

SDF1:

Stromal cell-derived factor 1

SVC:

Stromal vascular cells

SVF:

Stromal vascular fraction

WAT:

White adipose tissue

References

  1. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  CAS  PubMed  Google Scholar 

  2. Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Investig 112:1821–1830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Investig 112:1796–1808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sun S, Ji Y, Kersten S, Qi L (2012) Mechanisms of inflammatory responses in obese adipose tissue. Annu Rev Nutr 32:261–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363–374

    Article  CAS  PubMed  Google Scholar 

  6. Solinas G, Vilcu C, Neels JG et al (2007) JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 6:386–397

    Article  CAS  PubMed  Google Scholar 

  7. Han MS, Jung DY, Morel C et al (2013) JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339:218–222

    Article  CAS  PubMed  Google Scholar 

  8. Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG (2008) Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab 8:301–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chawla A, Nguyen KD, Goh YP (2011) Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 11:738–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kanda H, Tateya S, Tamori Y et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Investig 116:1494–1505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Weisberg SP, Hunter D, Huber R et al (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Investig 116:115–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Inouye KE, Shi H, Howard JK et al (2007) Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 56:2242–2250

    Article  CAS  PubMed  Google Scholar 

  13. Kirk EA, Sagawa ZK, McDonald TO, O’Brien KD, Heinecke JW (2008) Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes 57:1254–1261

    Article  CAS  PubMed  Google Scholar 

  14. Zella D, Barabitskaja O, Burns JM et al (1998) Interferon-gamma increases expression of chemokine receptors CCR1, CCR3, and CCR5, but not CXCR4 in monocytoid U937 cells. Blood 91:4444–4450

    CAS  PubMed  Google Scholar 

  15. Zella D, Barabitskaja O, Casareto L et al (1999) Recombinant IFN-alpha (2b) increases the expression of apoptosis receptor CD95 and chemokine receptors CCR1 and CCR3 in monocytoid cells. J Immunol 163:3169–3175

    CAS  PubMed  Google Scholar 

  16. Kucia M, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 97:133–146

    Article  CAS  PubMed  Google Scholar 

  17. Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  CAS  PubMed  Google Scholar 

  18. De Clercq E, Yamamoto N, Pauwels R et al (1994) Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother 38:668–674

    Article  PubMed Central  PubMed  Google Scholar 

  19. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  CAS  PubMed  Google Scholar 

  20. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    Article  CAS  PubMed  Google Scholar 

  21. Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M (2003) Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42:139–148

    Article  PubMed  Google Scholar 

  22. Nagasawa T, Hirota S, Tachibana K et al (1996) Defects of B cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    Article  CAS  PubMed  Google Scholar 

  23. McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213:442–456

    Article  CAS  PubMed  Google Scholar 

  24. Hill WD, Hess DC, Martin-Studdard A et al (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96

    CAS  PubMed  Google Scholar 

  25. Blogowski W, Serwin K, Budkowska M et al (2012) Clinical analysis of systemic and adipose tissue levels of selected hormones/adipokines and stromal-derived factor-1. J Biol Regul Homeost Agents 26:607–615

    CAS  PubMed  Google Scholar 

  26. Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46:2587–2597

    Article  CAS  PubMed  Google Scholar 

  27. Tabatabai G, Frank B, Mohle R, Weller M, Wick W (2006) Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-beta-dependent HIF-1alpha-mediated induction of CXCL12. Brain J Neurol 129:2426–2435

    Article  Google Scholar 

  28. Schober A (2008) Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol 28:1950–1959

    Article  CAS  PubMed  Google Scholar 

  29. Bernhagen J, Krohn R, Lue H et al (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596

    Article  CAS  PubMed  Google Scholar 

  30. Conine SJ, Cross JV (2014) MIF deficiency does not alter glucose homeostasis or adipose tissue inflammatory cell infiltrates during diet-induced obesity. Obesity 22:418–425

    Article  CAS  PubMed  Google Scholar 

  31. Balabanian K, Lagane B, Infantino S et al (2005) The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280:35760–35766

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Shiozawa Y, Wang J et al (2008) The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 283:4283–4294

    Article  CAS  PubMed  Google Scholar 

  33. Berahovich RD, Zabel BA, Penfold ME et al (2010) CXCR7 protein is not expressed on human or mouse leukocytes. J Immunol 185:5130–5139

    Article  CAS  PubMed  Google Scholar 

  34. Burns JM, Summers BC, Wang Y et al (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203:2201–2213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zabel BA, Wang Y, Lewen S et al (2009) Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol 183:3204–3211

    Article  CAS  PubMed  Google Scholar 

  36. Sierro F, Biben C, Martinez-Munoz L et al (2007) Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A 104:14759–14764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig 117:175–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR (2007) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:16–23

    Article  CAS  PubMed  Google Scholar 

  39. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR (2008) Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57:3239–3246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sartipy P, Loskutoff DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 100:7265–7270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kamei N, Tobe K, Suzuki R et al (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–26614

    Article  CAS  PubMed  Google Scholar 

  42. Gouwy M, Struyf S, Noppen S et al (2008) Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events. Mol Pharmacol 74:485–495

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2013R1A2A1A03010110 and No.2010-0028684). This work was also funded by the GyeongSangBuk-Do Forestry Environment Research Institute.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

DK, JK, KY, POB, PGS and SHR contributed to the conception and design of the study. DK, JK, JHY, JG, PS, SoP, AL, CPH, MSJ, YK and SeP contributed to the acquisition of data. DK, JK, and CPH contributed to data analysis. DK, JK, JHY, JG, MHJ and SHR contributed to the interpretation of data. DK drafted the manuscript and JK, JHY, JG, KY, PS, SoP, AL, CPH, MSJ, YK, SeP, MHJ, POB, PGS and SHR revised it. All authors approved the final version to be published. SHR is the guarantor of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Ryu.

Additional information

Dayea Kim and Jaeyoon Kim contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Methods

(PDF 159 kb)

ESM Fig. 1

(PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Kim, J., Yoon, J.H. et al. CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice. Diabetologia 57, 1456–1465 (2014). https://doi.org/10.1007/s00125-014-3237-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3237-5

Keywords

Navigation