Skip to main content
Log in

Stabilisierung und Reanimation des Neugeborenen direkt nach der Geburt

Kommentierte Zusammenfassung der Leitlinien des European Resuscitation Council 2015

Stabilization and resuscitation of neonates directly after birth

Summary of the 2015 European Resuscitation Council guidelines with comments

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

An Erratum to this article was published on 20 May 2016

Zusammenfassung

Am 15. Oktober 2015 wurden die neuen Reanimations-Guidelines des European Resuscitation Council (ERC) veröffentlicht. Im Kap. 7 finden sich die Empfehlungen zur Stabilisierung und zur Reanimation von Neugeborenen. Der Algorithmus der Neugeborenenreanimation hat sich grundsätzlich nicht geändert, dennoch gibt es einige interessante Neuerungen. So wurde das Vorgehen bei mekoniumhaltigem Fruchtwasser deutlich vereinfacht und das Monitoring der Herzfrequenz über das EKG in die Empfehlungen aufgenommen. Die neue Empfehlung, in einer Reanimationssituation nicht mehr nur einen Nabelvenenkatheter (NVK) zu legen, sondern diesen auch in dieser Situation zentral zu platzieren, muss jedoch zumindest kritisch diskutiert werden. Der vorliegende Artikel stellt eine gekürzte Zusammenfassung der neuen ERC-Guidelines dar. So sind z. B. die Empfehlungen zur Versorgung des Frühgeborenen und die Maßnahmen nach erfolgreicher Reanimation nicht Bestandteil dieses Beitrags. Die Kommentare enthalten praktische Tipps, die die Umsetzung der neuen Leitlinien in die Praxis erleichtern sollen.

Abstract

On 15 October 2015 the European Resuscitation Council (ERC) published new guidelines for resuscitation of adults and children. Section 7 describes the recommendations for resuscitation and stabilization of babies at birth. The new life support algorithm for newborns shows relatively minor changes, nevertheless, some interesting new modifications are included. The management of amniotic fluid containing meconium has been clearly simplified and the use of an electrocardiogram (ECG) for immediate heart rate monitoring in critically ill newborns is now recommended. The new recommendation for a centrally located umbilical venous access (UVC) during resuscitation must, however, at least be critically discussed. This article presents a condensed summary of the current ERC guidelines so that the recommendations for stabilization of preterm infants and also post-resuscitation care are not the subject of this article. The comments include practical clinical tips, which may help the reader to implement the new resuscitation guidelines into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Wyllie J et al (2015) European Resuscitation Council Guidelines for Resuscitation 2015: section 7. Resuscitation and support of transition of babies at birth. Resuscitation 95:249–263

    Article  PubMed  Google Scholar 

  2. Ersdal HL et al (2012) Early initiation of basic resuscitation interventions including face mask ventilation may reduce birth asphyxia related mortality in low-income countries: a prospective descriptive observational study. Resuscitation 83(7):869–873

    Article  PubMed  Google Scholar 

  3. Perlman JM, Risser R (1995) Cardiopulmonary resuscitation in the delivery room: associated clinical events. Arch Pediatr Adolesc Med 149(1):20–25

    Article  CAS  PubMed  Google Scholar 

  4. Barber CA, Wyckoff MH (2006) Use and efficacy of endotracheal versus intravenous epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. Pediatrics 118(3):1028–1034

    Article  PubMed  Google Scholar 

  5. Aziz K et al (2008) Ante- and intra-partum factors that predict increased need for neonatal resuscitation. Resuscitation 79(3):444–452

    Article  PubMed  Google Scholar 

  6. Chiosi C (2013) Genetic drift. Hospital deliveries. Am J Med Genet A 161A(9):2122–2123

    Article  PubMed  Google Scholar 

  7. Ertugrul S et al (2013) Evaluation of neonatal outcomes in elective repeat cesarean delivery at term according to weeks of gestation. J Obstet Gynaecol Res 39(1):105–112

    Article  PubMed  Google Scholar 

  8. Yee W, Amin H, Wood S (2008) Elective cesarean delivery, neonatal intensive care unit admission, and neonatal respiratory distress. Obstet Gynecol 111(4):823–828

    Article  PubMed  Google Scholar 

  9. Laptook AR et al (2007) Admission temperature of low birth weight infants: predictors and associated morbidities. Pediatrics 119(3):e643–e649

    Article  PubMed  Google Scholar 

  10. Dalili H et al (2015) Comparison of the four proposed Apgar scoring systems in the assessment of birth asphyxia and adverse early neurologic outcomes. PLOS ONE 10(3):e0122116

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rudiger M et al (2015) Neonatal assessment in the delivery room – Trial to Evaluate a Specified Type of Apgar (TEST-Apgar). BMC Pediatr 15:18

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rabe H, Reynolds G, Diaz-Rossello J (2008) A systematic review and meta-analysis of a brief delay in clamping the umbilical cord of preterm infants. Neonatology 93(2):138–144

    Article  PubMed  Google Scholar 

  13. Strauss RG et al (2008) A randomized clinical trial comparing immediate versus delayed clamping of the umbilical cord in preterm infants: short-term clinical and laboratory endpoints. Transfusion 48(4):658–665

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kugelman A et al (2007) Immediate versus delayed umbilical cord clamping in premature neonates born. Am J Perinatol 24(5):307–315

    Article  PubMed  Google Scholar 

  15. Konstantelos D et al (2014) Positioning of term infants during delivery room routine handling – analysis of videos. BMC Pediatr 14:33

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cordero L Jr, Hon EH (1971) Neonatal bradycardia following nasopharyngeal stimulation. J Pediatr 78(3):441–447

    Article  PubMed  Google Scholar 

  17. Gungor S et al (2006) Oronasopharyngeal suction versus no suction in normal and term infants delivered by elective cesarean section: a prospective randomized controlled trial. Gynecol Obstet Invest 61(1):9–14

    Article  PubMed  Google Scholar 

  18. Waltman PA et al (2004) Building evidence for practice: a pilot study of newborn bulb suctioning at birth. J Midwifery Womens Health 49(1):32–38

    PubMed  Google Scholar 

  19. Hird MF, Greenough A, Gamsu HR (1991) Inflating pressures for effective resuscitation of preterm infants. Early Hum Dev 26(1):69–72

    Article  CAS  PubMed  Google Scholar 

  20. Klingenberg C et al (2013) Effect of sustained inflation duration; resuscitation of near-term asphyxiated lambs. Arch Dis Child Fetal Neonatal Ed 98(3):F222–7

    Article  PubMed  Google Scholar 

  21. te Pas AB et al (2009) Effect of sustained inflation length on establishing functional residual capacity at birth in ventilated premature rabbits. Pediatr Res 66(3):295–300

    Article  PubMed  Google Scholar 

  22. Harling AE et al (2005) Does sustained lung inflation at resuscitation reduce lung injury in the preterm infant? Arch Dis Child Fetal Neonatal Ed 90(5):F406–F410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindner W, Hogel J, Pohlandt F (2005) Sustained pressure-controlled inflation or intermittent mandatory ventilation in preterm infants in the delivery room? A randomized, controlled trial on initial respiratory support via nasopharyngeal tube. Acta Paediatr 94(3):303–309

    PubMed  Google Scholar 

  24. Lindner W et al (1999) Delivery room management of extremely low birth weight infants: spontaneous breathing or intubation? Pediatrics 103(5 Pt 1):961–967

    Article  CAS  PubMed  Google Scholar 

  25. Lista G et al (2015) Sustained lung inflation at birth for preterm infants: a randomized clinical trial. Pediatrics 135(2):e457–64

    Article  PubMed  Google Scholar 

  26. Lista G et al (2011) Does sustained lung inflation at birth improve outcome of preterm infants at risk for respiratory distress syndrome? Neonatology 99(1):45–50

    Article  PubMed  Google Scholar 

  27. Kamlin CO et al (2006) Accuracy of clinical assessment of infant heart rate in the delivery room. Resuscitation 71(3):319–321

    Article  PubMed  Google Scholar 

  28. Owen CJ, Wyllie JP (2004) Determination of heart rate in the baby at birth. Resuscitation 60(2):213–217

    Article  PubMed  Google Scholar 

  29. Voogdt KG et al (2010) A randomised, simulated study assessing auscultation of heart rate at birth. Resuscitation 81(8):1000–1003

    Article  PubMed  Google Scholar 

  30. Dawson JA et al (2013) Comparison of heart rate and oxygen saturation measurements from Masimo and Nellcor pulse oximeters in newly born term infants. Acta Paediatr 102(10):955–960

    Article  CAS  PubMed  Google Scholar 

  31. Kamlin CO et al (2008) Accuracy of pulse oximetry measurement of heart rate of newborn infants in the delivery room. J Pediatr 152(6):756–760

    Article  PubMed  Google Scholar 

  32. Katheria A, Rich W, Finer N (2012) Electrocardiogram provides a continuous heart rate faster than oximetry during neonatal resuscitation. Pediatrics 130(5):e1177–e1181

    Article  PubMed  Google Scholar 

  33. Mizumoto H et al (2012) Electrocardiogram shows reliable heart rates much earlier than pulse oximetry during neonatal resuscitation. Pediatr Int 54(2):205–207

    Article  PubMed  Google Scholar 

  34. van Vonderen JJ et al (2015) Pulse oximetry measures a lower heart rate at birth compared with electrocardiography. J Pediatr 166(1):49–53

    Article  PubMed  Google Scholar 

  35. Dawson JA et al (2009) Oxygen saturation and heart rate during delivery room resuscitation of infants. Arch Dis Child Fetal Neonatal Ed 94(2):F87–91

    Article  CAS  PubMed  Google Scholar 

  36. O’Donnell CP et al (2005) Feasibility of and delay in obtaining pulse oximetry during neonatal resuscitation. J Pediatr 147(5):698–699

    Article  PubMed  Google Scholar 

  37. Dildy GA et al (1994) Intrapartum fetal pulse oximetry: fetal oxygen saturation trends during labor and relation to delivery outcome. Am J Obstet Gynecol 171(3):679–684

    Article  CAS  PubMed  Google Scholar 

  38. Mariani G et al (2007) Pre-ductal and post-ductal O2 saturation in healthy term neonates after birth. J Pediatr 150(4):418–421

    Article  PubMed  Google Scholar 

  39. Rabi Y et al (2006) Oxygen saturation trends immediately after birth. J Pediatr 148(5):590–594

    Article  PubMed  Google Scholar 

  40. Smit M et al (2014) Pulse oximetry in newborns with delayed cord clamping and immediate skin-to-skin contact. Arch Dis Child Fetal Neonatal Ed 99(4):F309–14

    Article  PubMed  Google Scholar 

  41. Dawson JA et al (2010) Defining the reference range for oxygen saturation for infants after birth. Pediatrics 125(6):e1340–e1347

    Article  PubMed  Google Scholar 

  42. Wyllie J et al (2010) Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 81(Suppl 1):e260–87

    Article  PubMed  Google Scholar 

  43. Davis PG et al (2004) Resuscitation of newborn infants with 100 % oxygen or air: a systematic review and meta-analysis. Lancet 364(9442):1329–1333

    Article  PubMed  Google Scholar 

  44. Vento M et al (2009) Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 124(3):e439–e49

    Article  PubMed  Google Scholar 

  45. Ganga-Zandzou PS et al (1996) Is Ambu ventilation of newborn infants a simple question of finger-touch? Arch Pediatr 3(12):1270–1272

    Article  CAS  PubMed  Google Scholar 

  46. Oddie S, Wyllie J, Scally A (2005) Use of self-inflating bags for neonatal resuscitation. Resuscitation 67(1):109–112

    Article  PubMed  Google Scholar 

  47. Bennett S et al (2005) A comparison of three neonatal resuscitation devices. Resuscitation 67(1):113–118

    Article  PubMed  Google Scholar 

  48. Dawson JA et al (2011) Providing PEEP during neonatal resuscitation: which device is best? J Paediatr Child Health 47(10):698–703

    Article  PubMed  Google Scholar 

  49. Hartung JC et al (2013) Repeated thermo-sterilisation further affects the reliability of positive end-expiratory pressure valves. J Paediatr Child Health 49(9):741–745

    Article  PubMed  Google Scholar 

  50. Kelm M et al (2009) Reliability of two common PEEP-generating devices used in neonatal resuscitation. Klin Padiatr 221(7):415–418

    Article  CAS  PubMed  Google Scholar 

  51. Morley CJ et al (2010) The effect of a PEEP valve on a Laerdal neonatal self-inflating resuscitation bag. J Paediatr Child Health 46(1–2):51–56

    Article  PubMed  Google Scholar 

  52. Finer NN et al (2001) Comparison of methods of bag and mask ventilation for neonatal resuscitation. Resuscitation 49(3):299–305

    Article  CAS  PubMed  Google Scholar 

  53. Roehr CC et al (2010) Manual ventilation devices in neonatal resuscitation: tidal volume and positive pressure-provision. Resuscitation 81(2):202–205

    Article  PubMed  Google Scholar 

  54. Trevisanuto D et al (2015) Supreme laryngeal mask airway versus face mask during neonatal resuscitation: a randomized controlled trial. J Pediatr 167(2):286–291 e1

    Article  PubMed  Google Scholar 

  55. Schmolzer GM et al (2013) Supraglottic airway devices during neonatal resuscitation: an historical perspective, systematic review and meta-analysis of available clinical trials. Resuscitation 84(6):722–730

    Article  PubMed  Google Scholar 

  56. Trevisanuto D et al (2004) Laryngeal mask airway: is the management of neonates requiring positive pressure ventilation at birth changing? Resuscitation 62(2):151–157

    Article  PubMed  Google Scholar 

  57. Zhu XY et al (2011) A prospective evaluation of the efficacy of the laryngeal mask airway during neonatal resuscitation. Resuscitation 82(11):1405–1409

    Article  PubMed  Google Scholar 

  58. Hosono S et al (2009) A role of end-tidal CO(2) monitoring for assessment of tracheal intubations in very low birth weight infants during neonatal resuscitation at birth. J Perinat Med 37(1):79–84

    Article  PubMed  Google Scholar 

  59. Repetto JE et al (2001) Use of capnography in the delivery room for assessment of endotracheal tube placement. J Perinatol 21(5):284–287

    Article  CAS  PubMed  Google Scholar 

  60. Roberts WA et al (1995) The use of capnography for recognition of esophageal intubation in the neonatal intensive care unit. Pediatr Pulmonol 19(5):262–268

    Article  CAS  PubMed  Google Scholar 

  61. Aziz HF, Martin JB, Moore JJ (1999) The pediatric disposable end-tidal carbon dioxide detector role in endotracheal intubation in newborns. J Perinatol 19(2):110–113

    Article  CAS  PubMed  Google Scholar 

  62. Garey DM et al (2008) Tidal volume threshold for colorimetric carbon dioxide detectors available for use in neonates. Pediatrics 121(6):e1524–e1527

    Article  PubMed  Google Scholar 

  63. Leone TA et al (2006) Disposable colorimetric carbon dioxide detector use as an indicator of a patent airway during noninvasive mask ventilation. Pediatrics 118(1):e202–e204

    Article  PubMed  Google Scholar 

  64. Christman C et al (2011) The two-thumb is superior to the two-finger method for administering chest compressions in a manikin model of neonatal resuscitation. Arch Dis Child Fetal Neonatal Ed 96(2):F99–F101

    Article  PubMed  Google Scholar 

  65. Dorfsman ML et al (2000) Two-thumb vs. two-finger chest compression in an infant model of prolonged cardiopulmonary resuscitation. Acad Emerg Med 7(10):1077–1082

    Article  CAS  PubMed  Google Scholar 

  66. Menegazzi JJ et al (1993) Two-thumb versus two-finger chest compression during CRP in a swine infant model of cardiac arrest. Ann Emerg Med 22(2):240–243

    Article  CAS  PubMed  Google Scholar 

  67. Udassi S et al (2010) Two-thumb technique is superior to two-finger technique during lone rescuer infant manikin CPR. Resuscitation 81(6):712–717

    Article  PubMed  Google Scholar 

  68. Lim JS et al (2013) Comparison of overlapping (OP) and adjacent thumb positions (AP) for cardiac compressions using the encircling method in infants. Emerg Med J 30(2):139–142

    Article  PubMed  Google Scholar 

  69. Berkowitz ID et al (1989) Blood flow during cardiopulmonary resuscitation with simultaneous compression and ventilation in infant pigs. Pediatr Res 26(6):558–564

    Article  CAS  PubMed  Google Scholar 

  70. Dannevig I et al (2012) lung injury in asphyxiated newborn pigs resuscitated from cardiac arrest – the impact of supplementary oxygen, longer ventilation intervals and chest compressions at different compression-to-ventilation ratios. Open Respir Med J 6:89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dannevig I et al (2013) Brain inflammation induced by severe asphyxia in newborn pigs and the impact of alternative resuscitation strategies on the newborn central nervous system. Pediatr Res 73(2):163–170

    Article  CAS  PubMed  Google Scholar 

  72. Hemway RJ, Christman C, Perlman J (2013) The 3:1 is superior to a 15:2 ratio in a newborn manikin model in terms of quality of chest compressions and number of ventilations. Arch Dis Child Fetal Neonatal Ed 98(1):F42–F45

    Article  PubMed  Google Scholar 

  73. Solevag AL et al (2010) Extended series of cardiac compressions during CPR in a swine model of perinatal asphyxia. Resuscitation 81(11):1571–1576

    Article  PubMed  Google Scholar 

  74. Solevag AL et al (2011) Return of spontaneous circulation with a compression:ventilation ratio of 15:2 versus 3:1 in newborn pigs with cardiac arrest due to asphyxia. Arch Dis Child Fetal Neonatal Ed 96(6):F417–F421

    Article  PubMed  Google Scholar 

  75. Solevag AL et al (2012) Minute ventilation at different compression to ventilation ratios, different ventilation rates, and continuous chest compressions with asynchronous ventilation in a newborn manikin. Scand J Trauma Resusc Emerg Med 20:73

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dean JM et al (1991) Improved blood flow during prolonged cardiopulmonary resuscitation with 30 % duty cycle in infant pigs. Circulation 84(2):896–904

    Article  CAS  PubMed  Google Scholar 

  77. Abe KK, Blum GT, Yamamoto LG (2000) Intraosseous is faster and easier than umbilical venous catheterization in newborn emergency vascular access models. Am J Emerg Med 18(2):126–129

    Article  CAS  PubMed  Google Scholar 

  78. DeBoer S et al (2008) Infant intraosseous infusion. Neonatal Netw 27(1):25–32

    Article  PubMed  Google Scholar 

  79. Ellemunter H et al (1999) Intraosseous lines in preterm and full term neonates. Arch Dis Child Fetal Neonatal Ed 80(1):F74–F75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Engle WA (2006) Intraosseous access for administration of medications in neonates. Clin Perinatol 33(1):161–168

    Article  PubMed  Google Scholar 

  81. Heyder-Musolf J, Giest J, Straub J (2011) Intraosseous access on a 1300 g septical premature infant. Anasthesiol Intensivmed Notfallmed Schmerzther 46(10):654–657

    Article  PubMed  Google Scholar 

  82. Neuhaus D (2014) Intraosseous infusion in elective and emergency pediatric anesthesia: when should we use it? Curr Opin Anaesthesiol 27(3):282–287

    Article  CAS  PubMed  Google Scholar 

  83. Rajani AK et al (2011) Comparison of umbilical venous and intraosseous access during simulated neonatal resuscitation. Pediatrics 128(4):e954–e958

    Article  PubMed  Google Scholar 

  84. Wyckoff MH, Perlman JM, Laptook AR (2005) Use of volume expansion during delivery room resuscitation in near-term and term infants. Pediatrics 115(4):950–955

    Article  PubMed  Google Scholar 

  85. Vain NE et al (2004) Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulders: multicentre, randomised controlled trial. Lancet 364(9434):597–602

    Article  PubMed  Google Scholar 

  86. Wiswell TE et al (2000) Delivery room management of the apparently vigorous meconium-stained neonate: results of the multicenter, international collaborative trial. Pediatrics 105(1 Pt 1):1–7

    Article  CAS  PubMed  Google Scholar 

  87. Chettri S, Adhisivam B, Bhat BV (2015) Endotracheal suction for Nonvigorous neonates born through Meconium stained amniotic fluid: a randomized controlled trial. J Pediatr 166(5):1208–1213

    Article  PubMed  Google Scholar 

  88. Dargaville PA et al (2011) Randomized controlled trial of lung lavage with dilute surfactant for meconium aspiration syndrome. J Pediatr 158(3):383–389 e2

    Article  CAS  PubMed  Google Scholar 

  89. Dargaville PA et al (2013) Fluid recovery during lung lavage in meconium aspiration syndrome. Acta Paediatr 102(2):e90–e93

    Article  PubMed  Google Scholar 

  90. Ziv A et al (2006) Simulation-based medical education: an ethical imperative. Simul Healthc 1(4):252–256

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Schwindt.

Ethics declarations

Interessenkonflikt

J.-C. Schwindt ist Geschäftsführer der SIMCharacters Training GmbH, die Reanimations- und Simulationstrainings anbietet. E. Heimberg, O. Heinzel, F. Hoffmann und J.-C. Schwindt sind Mitglieder des Vereins PAEDSIM – Teamtraining für Kindernotfälle e. V., der Simulationstrainings anbietet.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

T. Nicolai, München

O. Heinzel, Tübingen

F. Hoffmann, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwindt, JC., Heinzel, O., Hoffmann, F. et al. Stabilisierung und Reanimation des Neugeborenen direkt nach der Geburt. Monatsschr Kinderheilkd 164, 203–217 (2016). https://doi.org/10.1007/s00112-016-0045-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-016-0045-7

Schlüsselwörter

Keywords

Navigation