Skip to main content
Log in

Mesenchymale Stammzellen der Haut

Gegenwärtiger Stand der Forschung, potenzielle klinische Anwendungen

Cutaneous mesenchymal stem cells

Current status of research and potential clinical applications

  • Übersichten
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Es ist zu erwarten, dass innerhalb der nächsten Dekade Stammzelltherapien Einzug in die klinische Medizin halten werden. Die dermatologische Stammzellforschung konzentrierte sich im Wesentlichen auf die Epidermis und den Haarfollikel. Im Jahr 2001 wurden dermale mesenchymale Stammzellen beschrieben, die die Kapazität haben, sich in Adipozyten, glatte Muskelzellen, Osteozyten, Chondrozyten und sogar Neuronen und Glia als auch Zellen der erythroiden und myeloiden Zelllinie zu entwickeln. Die perifollikuläre Bindegewebsscheide und die Haarpapille bilden dabei wahrscheinlich die anatomische Nische für diese multipotenten dermalen Stammzellen, die das Potenzial besitzen, als einfach zugängliche, autologe Quelle für zukünftige Stammzelltransplantationen zu fungieren. Mögliche therapeutische Anwendungsmöglichkeiten bestehen in der Behandlung der akuten und steroidrefraktären Graft-versus-Host-Reaktion, des systemischen Lupus erythematodes, der idiopathischen pulmonalen Fibrose und der Arthrose. Das neuronale Differenzierungspotenzial kutaner mesenchymaler Stammzellen könnte für die Behandlung neurodegenerativer Erkrankungen und von Rückenmarksverletzungen genutzt werden. Der unmittelbarste Einfluss ist in der Therapie schwieriger Wunden zu erwarten.

Abstract

Within the next decade stem cell-based therapies can be expected to be part of clinical medicine. In regard to the skin, the focus of stem cell research is on the epidermis and the hair follicle. In 2001, mesenchymal stem cells residing within the dermis were first isolated which have the capacity to differentiate into adipocytes, smooth muscle cells, osteocytes, chondrocytes and even neurons and glia as well as hematopoietic cells of myeloid and erythroid lineage. The perifollicular connective tissue sheath and the papilla represent the likely anatomical niche for these multipotent dermal cells. They have the potential to function as an easily accessible, autologous source for future stem cell transplantation. Potential therapeutic applications include the treatment of acute and steroid-refractory graft-versus-host disease, systemic lupus erythematosus, idiopathic pulmonary fibrosis and arthritis. The neuronal differentiation potential of cutaneous mesenchymal stem cells may also be exploited in the treatment of neurodegenerative disorders and traumatic spinal injury. The most immediate impact can be expected in the field of wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Belicchi M, Pisati F, Lopa R et al (2004) Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J Neurosci Res 77:475–486

    Article  CAS  PubMed  Google Scholar 

  2. Chen FG, Zhang WJ, Bi D et al (2007) Clonal analysis of nestin(−) vimentin(+) multipotent fibroblasts isolated from human dermis. J Cell Sci 120:2875–2883

    Article  CAS  PubMed  Google Scholar 

  3. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle and skin carcinogenesis. Cell 61:1329–1337

    Article  CAS  PubMed  Google Scholar 

  4. Dyce PW, Zhu H, Craig J, Li J (2004) Stem cells with multilineage potential derived from porcine skin. Biochem Biophys Res Commun 316:651–658

    Article  CAS  PubMed  Google Scholar 

  5. Fernandes KJ, Kobayashi NR, Gallagher CJ et al (2006) Analysis of the neurogenic potential of multipotent skin-derived precursors. Exp Neurol 201:32–48

    Article  PubMed  Google Scholar 

  6. Fritz V, Jorgensen C (2008) Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Curr Stem Cell Res Ther 3:32–42

    Article  CAS  PubMed  Google Scholar 

  7. Gingras M, Champigny MF, Berthod F (2007) Differentiation of human adult skin-derived neuronal precursors into mature neurons. J Cell Physiol 210:498–506

    Article  CAS  PubMed  Google Scholar 

  8. Gorio A, Torrente Y, Madaschi L et al (2004) Fate of autologous dermal stem cells transplanted into the spinal cord after traumatic injury (TSCI). Neuroscience 125:179–189

    Article  CAS  PubMed  Google Scholar 

  9. Hoogduijn MJ, Gorjup E, Genever PG (2006) Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells Dev 15:49–60

    Article  CAS  PubMed  Google Scholar 

  10. Jahoda CA, Whitehouse J, Reynolds AJ, Hole N (2003) Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 12:849–859

    Article  PubMed  Google Scholar 

  11. Joannides A, Gaughwin P, Schwiening C et al (2004) Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364:172–178

    Article  CAS  PubMed  Google Scholar 

  12. Kroeze KL, Jurgens WJ, Doulabi BZ et al (2009) Chemokine-mediated migration of skin-derived stem cells: predominant role for CCL5/RANTES. J Invest Dermatol 129:1569–1581

    Article  CAS  PubMed  Google Scholar 

  13. Kruse C, Bodó E, Petschnik AE et al (2006) Towards the development of a pragmatic technique for isolating and differentiating nestin-positive cells from human scalp skin into neuronal and glial cell populations: generating neurons from human skin? Exp Dermatol 15:794–800

    Article  PubMed  Google Scholar 

  14. Lako M, Armstrong L, Cairns PM et al (2002) Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci 115:3967–3974

    Article  CAS  PubMed  Google Scholar 

  15. Lee KD (2008) Applications of mesenchymal stem cells: an updated review. Chang Gung Med J 31:228–236

    PubMed  Google Scholar 

  16. Lorenz K, Sicker M, Schmelzer E et al (2008) Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol 17:925–932

    Article  CAS  PubMed  Google Scholar 

  17. Lysy PA, Smets F, Sibille C et al (2007) Human skin fibroblasts: from mesodermal to hepatocyte-like differentiation. Hepatology 46:1574–1585

    Article  CAS  PubMed  Google Scholar 

  18. McKenzie IA, Biernaskie J, Toma JG et al (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26:6651–6660

    Article  CAS  PubMed  Google Scholar 

  19. Medina RJ, Kataoka K, Takaishi M et al (2006) Isolation of epithelial stem cells from dermis by a three-dimensional culture system. J Cell Biochem 98:174–184

    Article  CAS  PubMed  Google Scholar 

  20. Nishimura EK, Jordan SA, Oshima H et al (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416:854–860

    Article  CAS  PubMed  Google Scholar 

  21. Oliver RF (1966) Histological studies of whisker regeneration in the hooded rat. J Embryol Exp Morphol 16:231–244

    CAS  PubMed  Google Scholar 

  22. Pittenger MF (2008) Mesenchymal stem cells from adult bone marrow. Methods Mol Biol 449:27–44

    Article  CAS  PubMed  Google Scholar 

  23. Rath P, Shi H, Maruniak JA et al (2009) Stem cells as vectors to deliver HSV/tk gene therapy for malignant gliomas. Curr Stem Cell Res Ther 4:44–49

    Article  CAS  PubMed  Google Scholar 

  24. Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB et al (1999) Trans-gender induction of hair follicles. Nature 402:33–34

    Article  CAS  PubMed  Google Scholar 

  25. Sellheyer K, Krahl D (2009) Spatiotemporal expression pattern of neuroepithelial stem cell marker nestin suggests a role in dermal homeostasis, neovasculogenesis and tumor stroma development: a study on embryonic and adult human skin. J Am Acad Dermatol (published online 2009 Oct 26; doi: 10.1016/j.jaad.2009.07.013)

  26. Sellheyer K, Nelson P, Krahl D (2009) Dermatofibrosarcoma protuberans: a tumor of nestin-positive cutaneous mesenchymal stem cells? Br J Dermatol 161:678–682

    Article  PubMed  Google Scholar 

  27. Shi CM, Cheng TM (2004) Differentiation of dermis-derived multipotent cells into insulin-producing pancreatic cells in vitro. World J Gastroenterol 10:2550–2552

    PubMed  Google Scholar 

  28. Shih DT, Lee DC, Chen SC et al (2005) Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 23:1012–1020

    Article  CAS  PubMed  Google Scholar 

  29. Siegel G, Schäfer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87(Suppl 9):S45–S49

    Article  PubMed  Google Scholar 

  30. Stoff A, Rivera AA, Banerjee SN et al (2009) Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp Dermatol 18:362–369

    Article  PubMed  Google Scholar 

  31. Sun L, Akiyama K, Zhang H et al (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27:1421–1432

    Article  CAS  PubMed  Google Scholar 

  32. Tobin DJ, Gunin A, Magerl M et al (2003) Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: implications for hair growth control. J Invest Dermatol 120:895–904

    Article  CAS  PubMed  Google Scholar 

  33. Toma JG, Akhavan M, Fernandes KJ et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    Article  CAS  PubMed  Google Scholar 

  34. Toma JG, McKenzie IA, Bagli D, Miller FD (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23:727–737

    Article  CAS  PubMed  Google Scholar 

  35. Vassilopoulos G, Russell DW (2003) Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 13:480–485

    Article  CAS  PubMed  Google Scholar 

  36. Yang LY, Zheng JK, Liu XM et al (2004) Culture of skin-derived precursors and their differentiation into neurons. Chin J Traumatol 7:91–95

    PubMed  Google Scholar 

  37. Zhao Z, Liao L, Cao Y et al (2005) Establishment and properties of fetal dermis-derived mesenchymal stem cell lines: plasticity in vitro and hematopoietic protection in vivo. Bone Marrow Transplant 36:355–365

    Article  CAS  PubMed  Google Scholar 

  38. Koestenbauer S Zech NH, Juch H et al (2006) Embryonic stem cells: similarities and differences between human and murine embryonic stem cells. Am J Reprod Immunol 55:169–180

    Article  CAS  PubMed  Google Scholar 

  39. Jahoda CA (2003) Cell movement in the hair follicle dermis – more than a two-way street? J Invest Dermatol 121:ix–xi

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Krahl.

Additional information

Widmung

Dieser Beitrag ist von Klaus Sellheyer, MD, USA, Herrn Prof. Dr. med. Eckart Haneke, Freiburg, aus Dank für die fortlaufende Unterstützung seiner beruflichen Laufbahn in Deutschland gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellheyer, K., Krahl, D. Mesenchymale Stammzellen der Haut. Hautarzt 61, 429–434 (2010). https://doi.org/10.1007/s00105-010-1919-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-010-1919-6

Schlüsselwörter

Keywords

Navigation