Skip to main content
Log in

Small bowel protection in IMRT for rectal cancer

A dosimetric study on supine vs. prone position

Dünndarmschonung bei der IMRT des Rektumkarzinoms

Dosimetrische Studie zur Bauch- und Rückenlagerung

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

This treatment planning study analyzes dose coverage and dose to organs at risk (OAR) in intensity-modulated radiotherapy (IMRT) of rectal cancer and compares prone vs. supine positioning as well as the effect of dose optimization for the small bowel (SB) by additional dose constraints in the inverse planning process.

Patients and methods

Based on the CT datasets of ten male patients in both prone and supine position, a total of four different IMRT plans were created for each patient. OAR were defined as the SB, bladder, and femoral heads. In half of the plans, two additional SB cost functions were used in the inverse planning process.

Results

There was a statistically significant dose reduction for the SB in prone position of up to 41% in the high and intermediate dose region, compared with the supine position. Furthermore, the femoral heads showed a significant dose reduction in prone position in the low dose region. Regarding the additional active SB constraints, the dose in the high dose region of the SB was significantly reduced by up to 14% with the additional cost functions. There were no significant differences in the dose distribution of the planning target volume (PTV) and the bladder.

Conclusion

Prone positioning can significantly reduce dose to the SB in IMRT for rectal cancer and therefore should not only be used in 3D conformal radiotherapy but also in IMRT of rectal cancer. Further protection of the SB can be achieved by additional dose constraints in inverse planning without jeopardizing the homogeneity of the PTV.

Zusammenfassung

Hintergrund

Diese Planungsstudie analysiert die Dosisverteilung im Zielvolumen und in den Risikoorganen („organs at risk“, OAR) bei der intensitätsmodulierten Strahlentherapie („intensity-modulated radiotherapy“, IMRT) des Rektumkarzinoms und vergleicht hierbei Bauch- und Rückenlagerung sowie die Effekte der Dosisoptimierung für den Dünndarm (DD) durch zusätzliche Dosiseinschränkungen bei der inversen Planung.

Material und Methode

Anhand der Computertomographien (CT) zur Bestrahlungsplanung von 10 männlichen Patienten in Bauch- und in Rückenlage wurden für jeden einzelnen Patienten jeweils 4 verschiedene IMRT-Pläne erstellt. Als OAR wurden DD, Blase sowie die Femurköpfe definiert. In der Hälfte der Fälle wurden in der inversen Planung 2 zusätzliche Optimierungsbedingungen für den DD verwendet.

Ergebnisse

In Bauchlagerung zeigte sich für den DD eine statistisch signifikante Dosisreduktion bis zu 41 % im mittleren und hohen Dosisbereich, verglichen mit der Rückenlagerung. Die Femurköpfe wiesen darüber hinaus in Bauchlagerung eine signifikante Dosisreduktion im Niedrigdosisbereich auf. Durch die zusätzlichen Optimierungsbedingungen bei der inversen Planung wurde für den DD eine weitere signifikante Dosisreduktion im Hochdosisbereich von bis zu 14 % erreicht. Die Dosisverteilung im Planungszielvolumen (PTV, „planning target volume“) und in der Blase wies keine signifikanten Unterschiede auf.

Schlussfolgerung

Die Bauchlagerung ermöglicht eine signifikante Dosisreduktion im DD bei der IMRT des Rektumkarzinoms und sollte daher nicht nur bei der 3D-konformalen Strahlentherapie, sondern auch bei der IMRT des Rektumkarzinoms eingesetzt werden. Eine weitere Reduktion der Dünndarmbelastung kann, ohne Gefährdung der Homogenität im PTV, durch zusätzliche Dosiseinschränkungen bei der inversen Planung erreicht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Glimelius B, Tiret E, Cervantes A, Arnold D, Group EGW (2013) Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(Suppl 6):vi81–vi88. doi:10.1093/annonc/mdt240

    Article  PubMed  Google Scholar 

  2. Network NNCC (2015) NCCN clinical practice guidelines in oncology (NCCN guidelines®) rectal cancer, version 2.2015. https://www.tri-kobe.org/nccn/guideline/colorectal/english/rectal.pdf. Accessed 02. Mai 2016

    Google Scholar 

  3. Sebag-Montefiore D, Stephens RJ, Steele R, Monson J, Grieve R, Khanna S, Quirke P, Couture J, de Metz C, Myint AS, Bessell E, Griffiths G, Thompson LC, Parmar M (2009) Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet 373(9666):811–820. doi:10.1016/S0140-6736(09)60484-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kapiteijn E, Putter H, van de Velde CJ, Cooperative investigators of the Dutch ColoRectal Cancer G (2002) Impact of the introduction and training of total mesorectal excision on recurrence and survival in rectal cancer in The Netherlands. Br J Surg 89(9):1142–1149. doi:10.1046/j.1365-2168.2002.02196.x

    Article  CAS  PubMed  Google Scholar 

  5. Nijkamp J, de Jong R, Sonke JJ, Remeijer P, van Vliet C, Marijnen C (2009) Target volume shape variation during hypo-fractionated preoperative irradiation of rectal cancer patients. Radiother Oncol 92(2):202–209. doi:10.1016/j.radonc.2009.04.022

    Article  PubMed  Google Scholar 

  6. Glimelius B, Gronberg H, Jarhult J, Wallgren A, Cavallin-Stahl E (2003) A systematic overview of radiation therapy effects in rectal cancer. Acta Oncol 42(5–6):476–492

    Article  PubMed  Google Scholar 

  7. Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau R, Martus P, Tschmelitsch J, Hager E, Hess CF, Karstens JH, Liersch T, Schmidberger H, Raab R, Rectal Cancer Study G (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351(17):1731–1740. doi:10.1056/NEJMoa040694

    Article  CAS  PubMed  Google Scholar 

  8. Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, Daban A, Bardet E, Beny A, Ollier JC, Trial ERG (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355(11):1114–1123. doi:10.1056/NEJMoa060829

    Article  CAS  PubMed  Google Scholar 

  9. Gerard JP, Conroy T, Bonnetain F, Bouche O, Chapet O, Closon-Dejardin MT, Untereiner M, Leduc B, Francois E, Maurel J, Seitz JF, Buecher B, Mackiewicz R, Ducreux M, Bedenne L (2006) Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3–4 rectal cancers: results of FFCD 9203. J Clin Oncol 24(28):4620–4625. doi:10.1200/JCO.2006.06.7629

    Article  PubMed  Google Scholar 

  10. Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, Becker H, Raab HR, Villanueva MT, Witzigmann H, Wittekind C, Beissbarth T, Rodel C (2012) Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30(16):1926–1933. doi:10.1200/JCO.2011.40.1836

    Article  CAS  PubMed  Google Scholar 

  11. Leitlinienprogramm Onkologie DK, Deutsche Krebshilfe, AWMF (2014) S3-Leitlinie Kolorektales Karzinom, Langversion 1.1, 2014. http://leitlinienprogramm-onkologie.de/Leitlinien.7.0.html. Accessed 02. Mai 2016

    Google Scholar 

  12. Swedish rectal cancer trialists (1997) Improved survival with preoperative radiotherapy in resectable rectal cancer. Swedish Rectal Cancer Trial. N Engl J Med 336(14):980–987. doi:10.1056/NEJM199704033361402

    Article  Google Scholar 

  13. Sprawka A, Pietrzak L, Garmol D, Tyc-Szczepaniak D, Kepka L, Bujko K (2013) Definitive radical external beam radiotherapy for rectal cancer: evaluation of local effectiveness and risk of late small bowel damage. Acta Oncol 52(4):816–823. doi:10.3109/0284186x.2012.707786

    Article  PubMed  Google Scholar 

  14. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76(3 Suppl):S10–S19. doi:10.1016/j.ijrobp.2009.07.1754

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marijnen CA, Kapiteijn E, van de Velde CJ, Martijn H, Steup WH, Wiggers T, Kranenbarg EK, Leer JW, Cooperative Investigators of the Dutch Colorectal Cancer G (2002) Acute side effects and complications after short-term preoperative radiotherapy combined with total mesorectal excision in primary rectal cancer: report of a multicenter randomized trial. J Clin Oncol 20(3):817–825

    Article  CAS  PubMed  Google Scholar 

  16. Peeters KC, van de Velde CJ, Leer JW, Martijn H, Junggeburt JM, Kranenbarg EK, Steup WH, Wiggers T, Rutten HJ, Marijnen CA (2005) Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: increased bowel dysfunction in irradiated patients – a Dutch colorectal cancer group study. J Clin Oncol 23(25):6199–6206. doi:10.1200/JCO.2005.14.779

    Article  CAS  PubMed  Google Scholar 

  17. Drzymala M, Hawkins MA, Henrys AJ, Bedford J, Norman A, Tait DM (2009) The effect of treatment position, prone or supine, on dose-volume histograms for pelvic radiotherapy in patients with rectal cancer. Br J Radiol 82(976):321–327. doi:10.1259/bjr/57848689

    Article  CAS  PubMed  Google Scholar 

  18. Cranmer-Sargison G, Kundapur V, Park-Somers E, Andreas J, Vachhrajani H, Sidhu NP (2013) Planning target volume margin evaluation and critical structure sparing for rectal cancer patients treated prone on a bellyboard. Clin Oncol 25(3):e17–e22. doi:10.1016/j.clon.2012.08.001

    Article  Google Scholar 

  19. Guerrero Urbano MT, Henrys AJ, Adams EJ, Norman AR, Bedford JL, Harrington KJ, Nutting CM, Dearnaley DP, Tait DM (2006) Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int J Radiat Oncol Biol Phys 65(3):907–916. doi:10.1016/j.ijrobp.2005.12.056

    Article  PubMed  Google Scholar 

  20. Mok H, Crane CH, Palmer MB, Briere TM, Beddar S, Delclos ME, Krishnan S, Das P (2011) Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma. Radiat Oncol 6:63. doi:10.1186/1748-717x-6-63

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu M, Liu B, Wang H, Ding L, Shi Y, Ge C, Su X, Liu X, Dong L (2015) Dosimetric comparative study of 3 different postoperative radiotherapy techniques (3D-CRT, IMRT, and RapidArc) for II–III stage rectal cancer. Medicine (Baltimore) 94(1):e372. doi:10.1097/md.0000000000000372

    Article  Google Scholar 

  22. Kilic D, Catli S, Ulger S, Kapucu LO (2015) Is there any impact of PET/CT on radiotherapy planning in rectal cancer patients undergoing preoperative IMRT? Turk J Med Sci 45(1):129–135

    Article  PubMed  Google Scholar 

  23. Nijkamp J, Doodeman B, Marijnen C, Vincent A, van Vliet-Vroegindeweij C (2012) Bowel exposure in rectal cancer IMRT using prone, supine, or a belly board. Radiother Oncol 102(1):22–29. doi:10.1016/j.radonc.2011.05.076

    Article  PubMed  Google Scholar 

  24. Fietkau R, Rodel C, Hohenberger W, Raab R, Hess C, Liersch T, Becker H, Wittekind C, Hutter M, Hager E, Karstens J, Ewald H, Christen N, Jagoditsch M, Martus P, Sauer R (2007) Rectal cancer delivery of radiotherapy in adequate time and with adequate dose is influenced by treatment center, treatment schedule, and gender and is prognostic parameter for local control: results of study CAO/ARO/AIO-94. Int J Radiat Oncol Biol Phys 67(4):1008–1019. doi:10.1016/j.ijrobp.2006.10.020

    Article  PubMed  Google Scholar 

  25. Baglan KL, Frazier RC, Yan D, Huang RR, Martinez AA, Robertson JM (2002) The dose-volume relationship of acute small bowel toxicity from concurrent 5‑FU-based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys 52(1):176–183

    Article  PubMed  Google Scholar 

  26. van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47(4):1121–1135

    Article  PubMed  Google Scholar 

  27. Syk E, Torkzad MR, Blomqvist L, Nilsson PJ, Glimelius B (2008) Local recurrence in rectal cancer: anatomic localization and effect on radiation target. Int J Radiat Oncol Biol Phys 72(3):658–664. doi:10.1016/j.ijrobp.2008.01.063

    Article  PubMed  Google Scholar 

  28. Myerson RJ, Garofalo MC, El Naqa I, Abrams RA, Apte A, Bosch WR, Das P, Gunderson LL, Hong TS, Kim JJ, Willett CG, Kachnic LA (2009) Elective clinical target volumes for conformal therapy in anorectal cancer: a radiation therapy oncology group consensus panel contouring atlas. Int J Radiat Oncol Biol Phys 74(3):824–830. doi:10.1016/j.ijrobp.2008.08.070

    Article  PubMed  Google Scholar 

  29. Daly ME, Murphy JD, Mok E, Christman-Skieller C, Koong AC, Chang DT (2011) Rectal and bladder deformation and displacement during preoperative radiotherapy for rectal cancer: are current margin guidelines adequate for conformal therapy? Pract Radiat Oncol 1(2):85–94. doi:10.1016/j.prro.2010.11.006

    Article  PubMed  Google Scholar 

  30. Hyams DM, Mamounas EP, Petrelli N, Rockette H, Jones J, Wieand HS, Deutsch M, Wickerham L, Fisher B, Wolmark N (1997) A clinical trial to evaluate the worth of preoperative multimodality therapy in patients with operable carcinoma of the rectum: a progress report of National Surgical Breast and Bowel Project Protocol R‑03. Dis Colon Rectum 40(2):131–139

    Article  CAS  PubMed  Google Scholar 

  31. Grann A, Minsky BD, Cohen AM, Saltz L, Guillem JG, Paty PB, Kelsen DP, Kemeny N, Ilson D, Bass-Loeb J (1997) Preliminary results of preoperative 5‑fluorouracil, low-dose leucovorin, and concurrent radiation therapy for clinically resectable T3 rectal cancer. Dis Colon Rectum 40(5):515–522

    Article  CAS  PubMed  Google Scholar 

  32. Nijkamp J, de Jong R, Sonke JJ, van Vliet C, Marijnen C (2009) Target volume shape variation during irradiation of rectal cancer patients in supine position: comparison with prone position. Radiother Oncol 93(2):285–292. doi:10.1016/j.radonc.2009.08.007

    Article  PubMed  Google Scholar 

  33. Fu YT, Lam JC, Tze JM (1995) Measurement of irradiated small bowel volume in pelvic irradiation and the effect of a bellyboard. Clin Oncol 7(3):188–192

    Article  CAS  Google Scholar 

  34. Stromberger C, Kom Y, Kawgan-Kagan M, Mensing T, Jahn U, Schneider A, Budach V, Kohler C, Marnitz S (2010) Intensity-modulated radiotherapy in patients with cervical cancer. An intra-individual comparison of prone and supine positioning. Radiat Oncol 5:63. doi:10.1186/1748-717X-5-63

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gallagher MJ, Brereton HD, Rostock RA, Zero JM, Zekoski DA, Poyss LF, Richter MP, Kligerman MM (1986) A prospective study of treatment techniques to minimize the volume of pelvic small bowel with reduction of acute and late effects associated with pelvic irradiation. Int J Radiat Oncol Biol Phys 12(9):1565–1573

    Article  CAS  PubMed  Google Scholar 

  36. Koelbl O, Richter S, Flentje M (1999) Influence of patient positioning on dose-volume histogram and normal tissue complication probability for small bowel and bladder in patients receiving pelvic irradiation: a prospective study using a 3D planning system and a radiobiological model. Int J Radiat Oncol Biol Phys 45(5):1193–1198

    Article  CAS  PubMed  Google Scholar 

  37. Froseth TC, Strickert T, Solli KS, Salvesen O, Frykholm G, Reidunsdatter RJ (2015) A randomized study of the effect of patient positioning on setup reproducibility and dose distribution to organs at risk in radiotherapy of rectal cancer patients. Radiat Oncol 10:217. doi:10.1186/s13014-015-0524-3

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yoon WS, Yang DS, Lee JA, Lee S, Park YJ, Kim CY (2012) Risk factors related to interfractional variation in whole pelvic irradiation for locally advanced pelvic malignancies. Strahlenther Onkol 188(5):395–401. doi:10.1007/s00066-011-0049-0

    Article  CAS  PubMed  Google Scholar 

  39. el-Gayed AA, Bel A, Vijlbrief R, Bartelink H, Lebesque JV (1993) Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging. Radiother Oncol 26(2):162–171

    Article  CAS  PubMed  Google Scholar 

  40. Wiesendanger-Wittmer EM, Sijtsema NM, Muijs CT, Beukema JC (2012) Systematic review of the role of a belly board device in radiotherapy delivery in patients with pelvic malignancies. Radiother Oncol 102(3):325–334. doi:10.1016/j.radonc.2012.02.004

    Article  PubMed  Google Scholar 

  41. Kim TH, Chie EK, Kim DY, Park SY, Cho KH, Jung KH, Kim YH, Sohn DK, Jeong S‑Y, Park J‑G (2005) Comparison of the belly board device method and the distended bladder method for reducing irradiated small bowel volumes in preoperative radiotherapy of rectal cancer patients. Int J Radiat Oncol Biol Phys 62(3):769–775. doi:10.1016/j.ijrobp.2004.11.015

    Article  PubMed  Google Scholar 

  42. Lee SH, Kim TH, Kim DY, Cho KH, Kim J‑Y, Park SY, Kim DH, Lim S‑B, Choi HS, Chang HJ (2006) The effect of belly board location in rectal cancer patients treated with preoperative radiotherapy. Clin Oncol 18(6):441–446. doi:10.1016/j.clon.2006.05.001

    Article  Google Scholar 

  43. Teoh S, Muirhead R (2015) Rectal radiotherapy – intensity-modulated radiotherapy delivery, delineation and doses. Clin Oncol. doi:10.1016/j.clon.2015.10.012

    Google Scholar 

  44. Reis T, Khazzaka E, Welzel G, Wenz F, Hofheinz RD, Mai S (2015) Acute small-bowel toxicity during neoadjuvant combined radiochemotherapy in locally advanced rectal cancer: determination of optimal dose-volume cut-off value predicting grade 2–3 diarrhoea. Radiat Oncol 10(30). doi:10.1186/s13014-015-0336-5

Download references

Acknowledgements

The authors thank Dr. Negin Sedaghat (Westmead and Nepean Hospitals, University of Sydney, Teaching Hospitals, Australia) for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Koeck M.D..

Ethics declarations

Conflict of interest

J. Koeck, K. Kromer, T. Baack, K. Siebenlist, S. Büttner, and F. Wenz declare that they have no competing interests. F. Lohr has travel grants, research support, and teaching honoraria from Elekta AB (Stockholm, Sweden) and IBA (Schwarzenbruck, Germany) as well as board membership from C‑Rad (Uppsala, Sweden) to declare. S. Mai has travel costs from Elekta AB (Stockholm, Sweden) to declare. J. Fleckenstein has teaching honoraria and travel costs from Elekta AB (Stockholm, Sweden) to declare.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

J. Koeck and K. Kromer contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koeck, J., Kromer, K., Lohr, F. et al. Small bowel protection in IMRT for rectal cancer. Strahlenther Onkol 193, 578–588 (2017). https://doi.org/10.1007/s00066-017-1107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1107-z

Keywords

Schlüsselwörter

Navigation