Skip to main content
Log in

Interventionelle Therapie von Herzklappenerkrankungen

Ein Ausblick

Interventional therapy of heart valve diseases

Future perspectives

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Nachdem gezeigt werden konnte, dass bislang nur im chirurgischen Bereich eingesetztes biologisches Klappenmaterial mit Hilfe von Stents und Kathetertechniken am Herzen verankert werden kann, haben interventionelle Behandlungsverfahren grundsätzlich das Potenzial, die bisher etablierten chirurgischen Therapieverfahren zur Behandlung von Klappenerkrankungen abzulösen. Gegenwärtig sind interventionelle Therapieverfahren zum Ersatz der Aortenklappe und der Pulmonalklappe weit vorangeschritten. Verbesserungen der Technik im Sinne der Verkleinerung der Einführkathetersysteme, der Vermeidung paravalvulärer Undichtigkeiten und der Verringerung der Schrittmacherraten führen zu einer hohen Patientenakzeptanz und zu niedrigerer Morbidität und werden die offene chirurgische Therapie der Aortenstenose langfristig verdrängen. Daneben hat die Mitral- und Pulmonalklappenvalvuloplastie weiterhin einen Stellenwert, da sie als effektives Behandlungsverfahren mit gutem Langzeitergebnis dem Klappenersatz auch aus ökonomischen Gründen vorzuziehen ist. Auch die minimal-invasive Mitralklappenrekonstruktion kann grundsätzlich durch die in Entwicklung befindlichen Katheterverfahren abgelöst werden. Die damit einhergehende Verbesserung der Bildverarbeitung im Röntgen- und Echobereich hat kardiale Interventionen zunehmend vereinfacht. Bei rückläufigen Kosten der Implantate und geringerem organisatorischen Aufwand (Heart Teams) werden sich diese Verfahren auch ökonomisch durchsetzen. Der valvuläre Interventionalist bedarf allerdings einer besonderen Ausbildung und eines besonderen Qualifikationsnachweises.

Abstract

Transcatheter procedures have been adopted as novel treatment strategy for patients with valvular heart disease, particularly for those who are inoperable or at high risk for surgical valve procedures. Significant technological advances have resulted in an improvement of devices for transcatheter aortic valve replacement (TAVI) with downsizing of crossing profiles, reduction in the rate of paravalvular leakage and conduction abnormalities as well as a lower short- and mid-term mortality and a higher patient acceptance. In the near future, TAVI may potentially develop as first-line treatment for the majority of patients with aortic valve disease. For patients with mitral and pulmonary stenosis, balloon valvuloplasty is effective and well established and should be preferred over valve replacement, last but not least also for economic reasons. For treatment of mitral regurgitation, several transcatheter devices aiming to restore or replace mitral valve function are currently under investigation. This review summarizes the current state of interventional treatment of valvular heart disease along with implications for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Figulla HR (1997) Minimal-invasive Therapie. In: Schaper W, Hofmann F, Kreuzer H (Hrsg) Herz- und Kreislaufforschung in Deutschland. Kohlhammer, Stuttgart

  2. Nkomo VT, Gardin JM, Skelton TN et al (2006) Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011

    Article  PubMed  Google Scholar 

  3. Vahanian A, Alfieri O, Andreotti F et al (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33:2451–2496

    Article  PubMed  Google Scholar 

  4. Nishimura RA, Otto CM, Bonow RO et al (2014) AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College Of Cardiology/American Heart Association task force on practice guidelines. J Thorac Cardiovasc Surg 148:e1–e132

    Article  PubMed  Google Scholar 

  5. Wilkins GT, Weyman AE, Abascal VM et al (1988) Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J 60:299–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ben Farhat M, Betbout F, Gamra H et al (1995) Results of percutaneous double-balloon mitral commissurotomy in one medical center in Tunisia. Am J Cardiol 76:1266–1270

    Article  Google Scholar 

  7. Ben Farhat M, Betbout F, Gamra H et al (1996) Complications of percutaneous mitral commissurotomy. Personal experience and review of the literature. Arch Mal Coeur Vaiss 89:417–423

    Google Scholar 

  8. Varma PK, Theodore S, Neema PK et al (2005) Emergency surgery after percutaneous transmitral commissurotomy: operative versus echocardiographic findings, mechanisms of complications, and outcomes. J Thorac Cardiovasc Surg 130:772–776

    Article  PubMed  Google Scholar 

  9. Iung B, Nicoud-Houel A, Fondard O et al (2004) Temporal trends in percutaneous mitral commissurotomy over a 15-year period. Eur Heart J 25:701–707

    Article  PubMed  Google Scholar 

  10. Maisano F, Franzen O, Baldus S et al (2013) Percutaneous mitral valve interventions in the real world: early and 1-year results from the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the MitraClip therapy in Europe. J Am Coll Cardiol 62:1052–1061

    Article  PubMed  Google Scholar 

  11. Wan B, Rahnavardi M, Tian DH et al (2013) A meta-analysis of MitraClip system versus surgery for treatment of severe mitral regurgitation. Ann Cardiothorac Surg 2:683–692

    PubMed Central  PubMed  Google Scholar 

  12. Feldman T, Foster E, Glower DD et al (2011) Percutaneous repair or surgery for mitral regurgitation. N Engl J Med 364:1395–1406

    Article  CAS  PubMed  Google Scholar 

  13. Ferguson J, Garza R (1991) Efficacy of multiple balloon aortic valvuloplasty procedures. The Mansfield Scientific Aortic Valvuloplasty Registry Investigators. J Am Coll Cardiol 17(16):1430–1435

    Article  CAS  PubMed  Google Scholar 

  14. Hamm CW, Möllmann H, Holzhey D et al (2014) The German Aortic Valve Registry (GARY): in-hospital outcome. Eur Heart J 35(24):1588–1598

    Article  PubMed Central  PubMed  Google Scholar 

  15. Leon MB, Smith CR, Mack M et al (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363:1597–1607

    Article  CAS  PubMed  Google Scholar 

  16. Smith CR, Leon MB, Mack MJ et al (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198

    Article  CAS  PubMed  Google Scholar 

  17. Adams DH, Popma JJ, Reardon MJ et al (2014) Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 370:1790–1798

    Article  CAS  PubMed  Google Scholar 

  18. Kuck KH, Eggebrecht H, Naber C et al (2014) Qualitätskriterien zur Durchführung der transvaskulären Aortenklappenimplantationen (TAVI) – Positionspapier der Deutschen Gesellschaft für Kardiologie. Kardiologe [Epub ahead of print]

  19. Seiffert M, Bader R, Kappert U et al (2014) Initial German experience with transapical implantation of a second-generation transcatheter heart valve for the treatment of aortic regurgitation. JACC Cardiovasc Interv 7:1168–1174

    Article  PubMed  Google Scholar 

  20. Dvir D, Webb J, Brecker S et al (2012) Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry. Circulation 126:2335–2344

    Article  PubMed  Google Scholar 

  21. Hayes CJ, Gersony WM, Driscoll DJ et al (1993) Second natural history study of congenital heart defects. Results of treatment of patients with pulmonary valvar stenosis. Circulation 87(2 Suppl):I28–I37

    CAS  PubMed  Google Scholar 

  22. Baumgartner H, Bonhoeffer P, De Groot NM et al (2010) ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 31:2915–2957

    Article  PubMed  Google Scholar 

  23. Khambadkone S, Coats L, Taylor A et al (2005) Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation 112:1189–1197

    Article  PubMed  Google Scholar 

  24. Kilic A, Saha-Chaudhuri P, Rankin JS, Conte JV (2013) Trends and outcomes of tricuspid valve surgery in North America: an analysis of more than 50,000 patients from the Society of Thoracic Surgeons database. Ann Thorac Surg 96:1546–1552

    Article  PubMed  Google Scholar 

  25. Lauten A, Figulla HR, Willich C et al (2010) Percutaneous caval stent valve implantation: investigation of an interventional approach for treatment of tricuspid regurgitation. Eur Heart J 31:1274–1281

    Article  PubMed  Google Scholar 

  26. Lauten A, Doenst T, Hamadanchi A et al (2014) Percutaneous bicaval valve implantation for transcatheter treatment of tricuspid regurgitation: clinical observations and 12-month follow-up. Circ Cardiovasc Interv 7:268–272

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. H.R. Figulla is cofounder and shareholder of JenaValve/Germany. A. Lauten receives consulting payment for the development of a percutaneous mitral valve from Occlutech/Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.R. Figulla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figulla, H., Lauten, A. Interventionelle Therapie von Herzklappenerkrankungen. Herz 40, 215–223 (2015). https://doi.org/10.1007/s00059-015-4207-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-015-4207-5

Schlüsselwörter

Keywords

Navigation