Skip to main content
Log in

Asymmetric biocatalysis of the nerve agent VX by human serum paraoxonase 1: molecular docking and reaction mechanism calculations

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Organophosphorus compounds have been employed in agricultural activity for a long time, causing serious public health problems. Due to their toxic properties, these compounds have also been used as chemical weapons. In view of this scenario, the catalytic degradation and the development of bioremediation processes of organophosphorus compounds have been of wide interest. Among several enzymes capable of degrading organophosphorus compounds, the human serum paraoxonase 1 has shown good potential for this purpose. To evaluate the interaction mode between the human serum paraoxonase 1 (wild-type and mutants) enzymes and the VX compound, one of the most toxic organophosphorus compounds known, molecular docking calculations were conducted. In addition, seeking to analyze the reaction pathway and the stereochemistry preference by human serum paraoxonase 1 and the R p and S p enantiomers of VX, quantum mechanical/molecular mechanics calculations were performed. Our theoretical findings put in evidence that the wild-type and mutant human serum paraoxonase 1 enzymes strongly interact with VX. Moreover, with the quantum mechanical/molecular mechanics study, we observed that the human serum paraoxonase 1 preferentially degrades one enantiomer in relation to the other. The current results indicate key points for designing new, more efficient mutant human serum paraoxonase 1 enzymes for VX degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aharoni A, Gaidukov L, Khersonsky O, McQ Gould S, Roodveldt C, Tawfik DS (2005) The “evolvability” of promiscuous protein functions. Nat Genet 37:73–76

    CAS  PubMed  Google Scholar 

  • Ahmed Z, Ravandi A, Maguire GF, Emili A, Draganov D, La Du BN, Kuksis A, Connelly PW (2002) Multiple substrates for paraoxonase-1 during oxidation of phosphatidylcholine by peroxynitrite. Biochem Biophys Res Commun 290:391–396

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert SD, Li YC, Raushel FM (2004) Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 43:5707–5715

    Article  CAS  PubMed  Google Scholar 

  • Ben-David M, Elias M, Filippi J-J, Duñach E, Silman I, Sussman JL, Tawfik DS (2012) Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1. J Mol Biol 418:181–196

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  • Blum M-M, Timperley CM, Williams GR, Thiermann H, Worek F (2008) Inhibitory potency against human acetylcholinesterase and enzymatic hydrolysis of Fluorogenic nerve agent mimics by human paraoxonase 1 and squid diisopropyl fluorophosphatase. Biochemistry 47:5216–5224

    Article  CAS  PubMed  Google Scholar 

  • Borman SA (2004) Much to do about enzyme mechanism. Chem Eng News 8:35–39

    Article  Google Scholar 

  • Camps J, Pujol I, Ballester F, Joven J, Simó JM (2011) Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in gram-negative bacteria. Antimicrob Agents Chemother 55:1325–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannard K (2006) The acute treatment of nerve agent exposure. J Neurol Sci 249:86–94

    Article  CAS  PubMed  Google Scholar 

  • Combet C, Jambon M, Deleage G, Geourion C (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18:213–214

    Article  CAS  PubMed  Google Scholar 

  • Da Cunha EFF, Barbosa EF, Oliveira AA, Ramalho TC (2010) Molecular modeling of Mycobacterium tuberculosis DNA gyrase and its molecular docking study with gatifloxacin inhibitors. J Biomol Struct Dyn 27:619–625

    Article  PubMed  Google Scholar 

  • Da Cunha EFF, Mancini DT, Ramalho TC (2012) Molecular modeling of the Toxoplasma gondii adenosine kinase inhibitors. Med Chem Res 21:590–600

    Article  Google Scholar 

  • Da Cunha EFF, Martins RCA, Albuquerque MG, de Alencastro RB (2004a) LIV-3D-QSAR model for estrogen receptor ligands. J Mol Model 10:297–304

    Article  Google Scholar 

  • Da Cunha EFF, Ramalho TC, de Alencastro RB, Maia ER (2004b) Interactions of 5-deazapteridine derivatives with Mycobacterium tuberculosis and with human dihydrofolate reductases. J Biomol Struct Dyn 22:119–130

    Article  PubMed  Google Scholar 

  • Dumas DP, Caldwell SR, Wild JR, Raushel FM (1989) Purification and properties of the phosphotriesterase for Pseudomonas diminuta. J Biol Chem 264:19659–19665

    CAS  PubMed  Google Scholar 

  • Ecobichon DJ (2001) Toxic effects of pesticides. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, McGraw-Hill 6, pp 763–810

  • Fairchild SZ, Peterson MW, Hamza A, Zhan CG, Cerasoli DM, Chang WE (2011) Computational characterization of how the VX nerve agent binds human serum paraoxonase 1. J Mol Model 17:97–109

    Article  CAS  PubMed  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian, Inc., Pittsburgh PA.

  • Furlong CE (2008) Paraoxonases: an historical perspective. The paraoxonases: their role in disease, development and xenobiotic metabolism. In: Mackness B, Mackness M, Aviram M, Paragh G (eds) Proteins and cell regulation, Springer, pp 3–32

  • Gaidukov L, Tawfik DS (2007) The development of human sera tests for HDL-bound serum PON1 and its lipolactonase activity. J Lipid Res 48:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Giacoppo JO, França TCC, Kuča K, da Cunha EFF, Abagyan R, Mancini DT, Ramalho TC (2014) Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J Biomol Struct Dyn 18:1–11

    Google Scholar 

  • Goncalves AS, Costa Franca TC, Caetano MS, Ramalho TC (2014) Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: reducing the computational cost in hybrid QM/MM methods. J Biomol Struct Dyn 32:301–307

    Article  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) Swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes AP, Costa Franca TC, Ramalho TC, Rennó MN, da Cunha EFF, Matos KS, Mancini D, Kuča K (2011) Docking studies and effects of syn-anti isomery of oximes derived from pyridine imidazol bicycled systems as potential human acetylcholinesterase reactivators. J Appl Biomed 9:163–171

    Article  CAS  Google Scholar 

  • Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelli RBG, McCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419

    Article  CAS  PubMed  Google Scholar 

  • Hehre WJ, Deppmeier BJ, Klunzinger PE (1999) PC SPARTAN Pro. Wave function Inc., Irvine

    Google Scholar 

  • Hu X, Jiang X, Lenz DE, Cerasoli DM, Wallqvist A (2009) In silico analyses of substrate interactions with human serum paraoxonase 1. Proteins: Struct Funct Bioinf 75:486–498

    Article  CAS  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  • Khersonsky O, Tawfik DS (2006) The histidine 115-histidine 134 dyad mediates the lactonase activity of mammalian serum paraoxonases. J Biol Chem 281:7649–7656

    Article  CAS  PubMed  Google Scholar 

  • Koren-Gluzer M, Aviram M, Meilin E, Hayek T (2011) The antioxidant HDL-associated paraoxonase-1 (PON1) attenuates diabetes development and stimulates beta-cell insulin release. Atherosclerosis 219:510–518

    Article  CAS  PubMed  Google Scholar 

  • Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 Assessment. Structure 19:1108–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo CL, La Du BN (1998) Calcium binding by human and rabbit serum paraoxonases - Structural stability and enzymatic activity. Drug Metab Dispos 26:653–660

    CAS  PubMed  Google Scholar 

  • La Du BN, Aviram M, Billecke S, Navab M, Primo-Parmo S, Sorenson RC, Standiford TJ (1999) On the physiological role(s) of the paraoxonases. Chem Biol Interact 119:379–388

    PubMed  Google Scholar 

  • Lenz DE, Broomfield CA, Yeung DT, Masson P, Maxwell DM, Cerasoli DM (2007a) Nerve agent bioscavengers: progress in development of a new mode of protection against organophosphorus exposure. In: Romano JA, Lukey B, and Salem H (eds) Chemical warfare agents: toxicity at low levels, CRC Press, Boca Raton, FL, 8, pp 175–202

  • Lenz DE, Yeung D, Smith JR, Sweeney RE, Lumley LA, Cerasoli DM (2007b) Stoichiometric and catalytic scavengers as protection against nerve agent toxicity: a mini review. Toxicology 233:31–39

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Furlong CE, Costa LG (1995) Paraoxonase protects against chlorpyrifos toxicity in mice. Toxicol Lett 76:219–226

    Article  CAS  PubMed  Google Scholar 

  • Li R, Liu Y, Zhang J, Chen K, Li S, Jiang J (2012) An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P-O-Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group. Appl Microbiol Biotechnol 94:1553–1564

    Article  CAS  PubMed  Google Scholar 

  • Mackness B, Mackness M (2010) Anti-inflammatory properties of paraoxonase-1 in atherosclerosis. In: Reddy ST (ed) Paraoxonases in inflammation, infection and toxicology, Springer 660, pp 143–151

  • Matos KS, Mancini DT, da Cunha EFF, Kuca K, Franca TCC, Ramalho TC (2011) Molecular aspects of the reactivation process of acetylcholinesterase inhibited by cyclosarin. J Braz Chem Soc 22:1999–2004

    CAS  Google Scholar 

  • Muthukrishnan S, Shete VS, Sanan TT, Vyas S, Oottikkal S, Porter LM, Magliery TJ, Hadad CM (2012) Mechanistic insights into the hydrolysis of organophosphorus compounds by paraoxonase-1: exploring the limits of substrate tolerance in a promiscuous enzyme. J Phys Org Chem 25:1247–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto TC, Harsch CK, Yeung DT, Magliery TJ, Cerasoli DM, Lenz DE (2009) Dramatic Differences in organophosphorus hydrolase activity between human and chimeric recombinant mammalian paraoxonase-1 enzymes. Biochemistry 48:10416–10422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra MC, Rath SN, Pradhan SK, Maharana J, De S (2014) Molecular dynamics simulation of human serum paraoxonase 1 in DPPC bilayer reveals a critical role of transmembrane helix H1 for HDL association. Eur Biophys J with Biophys Lett 43:35–51

    Article  CAS  Google Scholar 

  • Peterson MW, Fairchild SZ, Otto TC, Mohtashemi M, Cerasoli DM, Chang WE (2011) VX Hydrolysis by human serum paraoxonase 1: a comparison of experimental and computational results. PLoS One 6:e20335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puzyn T, Mostrag A, Falandysz J, Kholod Y, Leszczynski J (2009) Predicting water solubility of congeners: chloronaphthalenes-a case study. J Hazard Mater 170:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–437

    Article  CAS  PubMed  Google Scholar 

  • Ramalho TC, Caetano MS, Josa D, Luz GP, Freitas EA, da Cunha EFF (2011) Molecular modeling of Mycobacterium tuberculosis dUTpase: docking and catalytic mechanism studies. J Biomol Struct Dyn 28:907–917

    Article  CAS  PubMed  Google Scholar 

  • Ramalho TC, Rocha MVJ, da Cunha EFF, Oliveira LCA, Carvalho KTG (2010) Understanding the molecular behavior of organotin compounds to design their effective use as agrochemicals: exploration via quantum chemistry and experiments. J Biomol Struct Dyn 28:227–238

    Article  CAS  PubMed  Google Scholar 

  • Rea WJ (1996) Pesticides. J Nutr Environ Med 6:55–124

    Article  Google Scholar 

  • Rochu D, Chabriere E, Masson P (2007a) Human paraoxonase: a promising approach for pre-treatment and therapy of organophosphorus poisoning. Toxicology 233:47–59

    Article  CAS  PubMed  Google Scholar 

  • Rochu D, Chabriere E, Renault F, Elias M, Clery-Barraud C, Masson P (2007b) Stabilization of the active form(s) of human paraoxonase by human phosphate-binding protein. Biochem Soc Trans 35:1616–1620

    Article  CAS  PubMed  Google Scholar 

  • Rutkowska-Zbik D, Witko M (2006) Following nature-theoretical studies on factors modulating catalytic activity of porphyrins. J Mol Catal A: Chem 258:376–380

    Article  CAS  Google Scholar 

  • Saleem A, Azam SS, Zarina S (2012) Docking and molecular dynamics simulation studies on glycation-induced conformational changes of human paraoxonase 1. Eur Biophys J 41:241–248

    Article  CAS  PubMed  Google Scholar 

  • Sanan TT, Muthukrishnan S, Beck JM, Tao P, Hayes CJ, Otto TC, Cerasoli DM, Lenz DE, Hadad CM (2010) Computational modeling of human paraoxonase 1: preparation of protein models, binding studies, and mechanistic insights. J Phys Org Chem 23:357–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shih DM, Gu LJ, Xia YR, Navab M, Li WF, Hama S, Castellani LW, Furlong CE, Costa LG, Fogelman AM, Lusis AJ (1998) Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394:284–287

    Article  CAS  PubMed  Google Scholar 

  • Silva TC, Pires M, dos S, de Castro AA, da Cunha EFF, Caetano MS, Ramalho TC (2015) Molecular insight into the inhibition mechanism of plant and rat 4-hydroxyphenylpyruvate dioxygenase by molecular docking and DFT calculations. Med Chem Res 24:3958–3971

    Article  CAS  Google Scholar 

  • Singh UC, Kollmanpa PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  • Taylor P (2001) Anticholinesterase agents. In: Hardman JG, Limbird LE, and Gilman AG (eds) Goodman & Gilmanʼs The Pharmacological Basis of Therapeutics 10th ed. McGraw-Hill, pp. 175–191

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen R, Christensen MH (2006) MolDock: A new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  • Van der Spoel D, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Hess B, Feentra KA, Lindahl E, van Drunen R, Berendsen HJC (2001) GROMACS user manual. University of Groningen, Groningen, version 3.0

    Google Scholar 

  • Yeung DT, Lenz DE, Cerasoli DM (2005) Analysis of active-site amino-acid residues of human serum paraoxonase using competitive substrates. FEBS J 272:2225–2230

    Article  CAS  PubMed  Google Scholar 

  • Yeung DT, Lenz DE, Cerasoli DM (2008) Human paraoxonase I: a potential bioscavenger of organophosphorus nerve agents. In: Mackness B, Mackness M, Aviram M, and Paragh G (eds) Paraoxonases: their role in desease development and xenobiotic metabolism, pp 151–170

Download references

Acknowledgements

The authors wish to thank the Brazilian financial agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/ Ministério da Defesa (CAPES/MD) for financial support, and the Federal University of Lavras (UFLA) for providing the physical infrastructure and working space. This work was supported by Excellence project FIM UHK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodorico C. Ramalho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Teodorico C. Ramalho and Elaine F. F. da Cunha contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sartorelli, J., de Castro, A.A., Ramalho, T.C. et al. Asymmetric biocatalysis of the nerve agent VX by human serum paraoxonase 1: molecular docking and reaction mechanism calculations. Med Chem Res 25, 2521–2533 (2016). https://doi.org/10.1007/s00044-016-1704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1704-x

Keywords

Navigation