Skip to main content

Advertisement

Log in

Developing 2D-QSAR models for naphthyridine derivatives against HIV-1 integrase activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

HIV-1 integrase is an extremely important nominee in developing new and effective drugs especially naphthyridine compounds against acquired immune deficiency syndrome. The quantitative structure–activity relationship (QSAR) modeling is the most powerful method in computer-aided drug design and will be used to help the design of new naphthyridine derivatives. Different computational 2D-QSAR procedures applied to predict the relationship between the computational descriptors of naphthyridine derivatives with their HIV-1 integrase inhibition activities. Four different models including stepwise-MLR, consensus stepwise-MLR, GAPLS-MLR, and consensus GAPLS-MLR with appropriate correlation between the calculated and experimental biological activities (pIC50) against HIV-1 integrase were generated. Predictive QSAR models were obtained with R 2training values of 0.848, 0.862, 0.709, and 0.751 as well as R 2test values of 0.521, 0.651, 0.502, and 0.775 for stepwise-MLR, consensus stepwise-MLR, GAPLS-MLR, and consensus GAPLS-MLR models, respectively. QSAR models are high efficiency in prediction of the pIC50 in comparison with other models because of concerning the combination of “quantum and molecular mechanical” descriptors. Combination of “quantum” and “molecular mechanical” descriptors improved our models with high efficient test set activity prediction potency. The obtained results provided useful information for understanding the effects of polarizability, electronegativity, and especially functional groups such as aromatic nitrogens that are important for the activities of naphthyridine compounds. The developed QSAR models will be efficient for the rational design of potent naphthyridine derivatives against HIV-1 integrase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bacchi A, Carcelli M, Compari C, Fisicaro E, Pala N, Rispoli G, Rogolino D, Sanchez TW, Sechi M, Neamati N (2011) HIV-1 IN strand transfer chelating inhibitors: a focus on metal binding. Mol Pharm 8:507–519

    Article  CAS  PubMed  Google Scholar 

  • Billamboz M, Suchaud V, Bailly F, Lion C, Demeulemeester J, Calmels C, Andréola M-L, Christ F, Debyser Z, Cotelle P (2013) 4-Substituted 2-hydroxyisoquinoline-1,3(2H,4H)-diones as a novel class of HIV-1 integrase inhibitors. Med Chem Res 4:606–611

    CAS  Google Scholar 

  • Boros EE, Johns BA, Garvey EP, Koble CS, Miller WH (2006) Synthesis and HIV-integrase strand transfer inhibition activity of 7-hydroxy[1,3]thiazolo[5,4-b]pyridin-5(4H)-ones. Bioorg Med Chem Lett 16:5668–5672

    Article  CAS  PubMed  Google Scholar 

  • C Basak S (2013) Mathematical descriptors for the prediction of property, bioactivity, and toxicity of chemicals from their structure: a chemical-cum-biochemical approach. Curr Comput Aided Drug Des 9:449–462

    Article  Google Scholar 

  • Cheng Z, Zhang Y, Fu W (2010) QSAR study of carboxylic acid derivatives as HIV-1 integrase inhibitors. Eur J Med Chem 45:3970–3980

    Article  CAS  PubMed  Google Scholar 

  • Dayam R, Sanchez T, Neamati N (2005) Diketo acid pharmacophore. 2. Discovery of structurally diverse inhibitors of HIV-1 integrase. J Med Chem 48:8009–8015

    Article  CAS  PubMed  Google Scholar 

  • de Melo EB, Ferreira MMC (2009) Multivariate QSAR study of 4,5-dihydroxypyrimidine carboxamides as HIV-1 integrase inhibitors. Eur J Med Chem 44:3577–3583

    Article  PubMed  Google Scholar 

  • Dearden JC, Cronin MT, Kaiser KL (2009) How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241–266

    Article  CAS  PubMed  Google Scholar 

  • Egbertson MS, Moritz HM, Melamed JY, Han W, Perlow DS, Kuo MS, Embrey M, Vacca JP, Zrada MM, Cortes AR, Wallace A, Leonard Y, Hazuda DJ, Miller MD, Felock PJ, Stillmock KA, Witmer MV, Schleif W, Gabryelski LJ, Moyer G, Ellis JD, Jin L, Xu W, Braun MP, Kassahun K, Tsou NN, Young SD (2007) A potent and orally active HIV-1 integrase inhibitor. Bioorg Med Chem Lett 17:1392–1398

    Article  CAS  PubMed  Google Scholar 

  • Froimowitz M (1993) HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques 14:1010–1013

    CAS  PubMed  Google Scholar 

  • Furusjö E, Svenson A, Rahmberg M, Andersson M (2006) The importance of outlier detection and training set selection for reliable environmental QSAR predictions. Chemosphere 63:99–108

    Article  PubMed  Google Scholar 

  • Geretti AM, Armenia D, Ceccherini-Silberstein F (2012) Emerging patterns and implications of HIV-1 integrase inhibitor resistance. Curr Opin Infect Dis 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  CAS  PubMed  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co, Inc., Boston

    Google Scholar 

  • Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  • Gramatica P, Pilutti P, Papa E (2004) Validated QSAR prediction of OH tropospheric degradation of VOCs: splitting into training-test sets and consensus modeling. J Chem Inf Comput Sci 44:1794–1802

    Article  CAS  PubMed  Google Scholar 

  • Greene WC, Debyser Z, Ikeda Y, Freed EO, Stephens E, Yonemoto W, Buckheit RW, Esté JA, Cihlar T (2008) Novel targets for HIV therapy. Antivir Res 80:251–265

    Article  CAS  PubMed  Google Scholar 

  • Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, Wolfe A, Egbertson M, Bourgeois M, Melamed J, Wai JS, Young S, Vacca J, Hazuda DJ (2002) Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci USA 99:6661–6666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta S, Fallarero A, Vainio MJ, Saravanan P, Santeri Puranen J, Järvinen P, Johnson MS, Vuorela PM, Mohan CG (2011) Molecular docking guided comparative GFA, G/PLS, SVM and ANN models of structurally diverse dual binding site acetylcholinesterase inhibitors. Mol Inform 30:689–706

    CAS  Google Scholar 

  • Hansch C, Sammes PG, Taylor JB, Kennewell PD, Emmett JC, Ramsden CA, Drayton CJ (1990) Comprehensive medicinal chemistry: the rational design, mechanistic study & therapeutic application of chemical compounds, 1st edn. Pergamon Press, UK

    Google Scholar 

  • Huang J, Fan X (2011) Why QSAR fails: an empirical evaluation using conventional computational approach. Mol Pharm 8:600–608

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Grant GH, Richards WG (2011) Binding modes of diketo-acid inhibitors of HIV-1 integrase: a comparative molecular dynamics simulation study. J Mol Graph Model 29:956–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jalali-Heravi M, Ebrahimi-Najafabadi H (2011) The use of ladder particle swarm optimisation for quantitative structure–activity relationship analysis of human immunodeficiency virus-1 integrase inhibitors. Mol Simul 37:1221–1233

    Article  CAS  Google Scholar 

  • Johns BA, Weatherhead JG, Allen SH, Thompson JB, Garvey EP, Foster SA, Jeffrey JL, Miller WH (2009a) 1,3,4-Oxadiazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 2: SAR of the C5 position. Bioorg Med Chem Lett 19:1807–1810

    Article  CAS  PubMed  Google Scholar 

  • Johns BA, Weatherhead JG, Allen SH, Thompson JB, Garvey EP, Foster SA, Jeffrey JL, Miller WH (2009b) The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1: establishing the pharmacophore. Bioorg Med Chem Lett 19:1802–1806

    Article  CAS  PubMed  Google Scholar 

  • Johnson TW, Tanis SP, Butler SL, Dalvie D, DeLisle DM, Dress KR, Flahive EJ, Hu Q, Kuehler JE, Kuki A, Liu W, McClellan GA, Peng Q, Plewe MB, Richardson PF, Smith GL, Solowiej J, Tran KT, Wang H, Yu X, Zhang J, Zhu H (2011) Design and synthesis of novel N-hydroxy-dihydronaphthyridinones as potent and orally bioavailable HIV-1 integrase inhibitors. J Med Chem 54:3393–3417

    Article  CAS  PubMed  Google Scholar 

  • Katritzky AR, Kuanar M, Slavov S, Hall CD, Karelson M, Kahn I, Dobchev DA (2010) Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem Rev 110:5714–5789

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Gupta SP, Sharma PK, Anwar Z (2011) A QSAR study on some series of HIV-1 integrase inhibitors. Med Chem 7:553–560

    Article  CAS  PubMed  Google Scholar 

  • Kawasuji T, Yoshinaga T, Sato A, Yodo M, Fujiwara T, Kiyama R (2006) A platform for designing HIV integrase inhibitors. Part 1: 2-hydroxy-3-heteroaryl acrylic acid derivatives as novel HIV integrase inhibitor and modeling of hydrophilic and hydrophobic pharmacophores. Bioorg Med Chem 14:8430–8445

    Article  CAS  PubMed  Google Scholar 

  • Kovalishyn V, Tanchuk V, Charochkina L, Semenuta I, Prokopenko V (2012) Predictive QSAR modeling of phosphodiesterase 4 inhibitors. J Mol Graph Model 32:32–38

    Article  CAS  PubMed  Google Scholar 

  • LaFemina RL, Schneider CL, Robbins HL, Callahan PL, LeGrow K, Roth E, Schleif WA, Emini EA (1992) Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. J Virol 66:7414–7419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makhija MT, Kulkarni VM (2002) QSAR of HIV-1 integrase inhibitors by genetic function approximation method. Bioorg Med Chem 10:1483–1497

    Article  CAS  PubMed  Google Scholar 

  • Melamed JY, Egbertson MS, Varga S, Vacca JP, Moyer G, Gabryelski L, Felock PJ, Stillmock KA, Witmer MV, Schleif W, Hazuda DJ, Leonard Y, Jin L, Ellis JD, Young SD (2008) Synthesis of 5-(1-H or 1-alkyl-5-oxopyrrolidin-3-yl)-8-hydroxy-[1,6]-naphthyridine-7-carboxamide inhibitors of HIV-1 integrase. Bioorg Med Chem Lett 18:5307–5310

    Article  CAS  PubMed  Google Scholar 

  • Neamati N (2011) HIV-1 integrase inhibitor design: overview and historical perspectives. HIV-1 integrase, 1st edn. Wiley, Hoboken, pp 165–196

    Book  Google Scholar 

  • Ramajayam R, Mahera NB, Neamati N, Yadav MR, Giridhar R (2009) Synthesis and anti-HIV-1 integrase activity of cyano pyrimidinones. Arch Pharm (Weinheim) 342:710–715

    Article  CAS  Google Scholar 

  • Ravichandran V, Shalini S, Sundram K, Sokkalingam AD (2010) QSAR study of substituted 1,3,4-oxadiazole naphthyridines as HIV-1 integrase inhibitors. Eur J Med Chem 45:2791–2797

    Article  CAS  PubMed  Google Scholar 

  • Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313

    Article  CAS  Google Scholar 

  • Rucker C, Rucker G, Meringer M (2007) y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357

    Article  PubMed  Google Scholar 

  • Saiz-Urra L, Gonzalez MP, Fall Y, Gomez G (2007) Quantitative structure–activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors. Eur J Med Chem 42:64–70

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Kawakami H, Matsuzaki Y, Watanabe W, Yamataka K, Ikeda S, Kodama E, Matsuoka M, Shinkai H (2006) Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem 49:1506–1508

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kawakami H, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Matsuzaki Y, Yamataka K, Ikeda S, Shinkai H (2009) Quinolone carboxylic acids as a novel monoketo acid class of human immunodeficiency virus type 1 integrase inhibitors. J Med Chem 52:4869–4882

    Article  CAS  PubMed  Google Scholar 

  • Satpathy R, Ghosh S (2011) In-silico comparative study and quantitative structure–activity relationship analysis of some structural and physiochemical descriptors of elvitegravir analogs. J Young Pharm 3:246–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrao E, Odde S, Ramkumar K, Neamati N (2009) Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors. Retrovirology 6:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Shahlaei M (2013) Descriptor selection methods in quantitative structure–activity relationship studies: a review study. Chem Rev 113:8093–8103

    Article  CAS  PubMed  Google Scholar 

  • Soltani S, Abolhasani H, Zarghi A, Jouyban A (2010) QSAR analysis of diaryl COX-2 inhibitors: comparison of feature selection and train-test data selection methods. Eur J Med Chem 45:2753–2760

    Article  CAS  PubMed  Google Scholar 

  • Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method. J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  • Todeschini R, Consonni V, Mauri A, Pavan M (2006) DRAGON for Windows (Software for Molecular Descriptor Calculations), version 5.4. Talete srl, Milan, Italy

  • Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77

    Article  CAS  Google Scholar 

  • Turner BG, Summers MF (1999) Structural biology of HIV. J Mol Biol 285:1–32

    Article  CAS  PubMed  Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10:95–115

    Article  CAS  PubMed  Google Scholar 

  • Wills T, Vega V (2012) Elvitegravir: a once-daily inhibitor of HIV-1 integrase. Expert Opin Investig Drugs 21:395–401

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Parrill AL (2002) QSAR studies of HIV-1 integrase inhibition. Bioorg Med Chem 10:4169–4183

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A (2006) A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J Chem Inf Model 46:1984–1995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Oberg T, Dao P, Cherkasov A, Tetko IV (2008) Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48:766–784

    Article  CAS  PubMed  Google Scholar 

  • Zhuang L, Wai JS, Embrey MW, Fisher TE, Egbertson MS, Payne LS, Guare JP, Vacca JP, Hazuda DJ, Felock PJ, Wolfe AL, Stillmock KA, Witmer MV, Moyer G, Schleif WA, Gabryelski LJ, Leonard YM, Lynch JJ, Michelson SR, Young SD (2003) Design and synthesis of 8-hydroxy-[1,6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. J Med Chem 46:453–456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Iran National Science Foundation (INSF) and the Research Institute for Fundamental Sciences (RIFS)-University of Tabriz for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Barzegar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakariazadeh, M., Barzegar, A., Soltani, S. et al. Developing 2D-QSAR models for naphthyridine derivatives against HIV-1 integrase activity. Med Chem Res 24, 2485–2504 (2015). https://doi.org/10.1007/s00044-014-1305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1305-5

Keywords

Navigation